A REMARK ON THE LOCATION OF THE ZEROS OF POLYNOMIALS
Mathematica Moravica, Tome 3 (1999) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper we determine, in the complex plane, regions containing the zeros of the polynomial $P(z)=z^n+a_1z^{n-1}+a_2z^{n-2}+ \dots +a_{n-1}z+a_n$, $n \geq 3$. We also obtain two expressions which represent upper bounds for the moduli of the zeros of $P(z)$ with greater precision than those obtained by Cauchy and P. Montel.
@article{MM3_1999_3_1_a10,
     author = {Dragomir Simeunovi\'c},
     title = {A {REMARK} {ON} {THE} {LOCATION} {OF} {THE} {ZEROS} {OF} {POLYNOMIALS}},
     journal = {Mathematica Moravica},
     pages = {63 - 66},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1999},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_1999_3_1_a10/}
}
TY  - JOUR
AU  - Dragomir Simeunović
TI  - A REMARK ON THE LOCATION OF THE ZEROS OF POLYNOMIALS
JO  - Mathematica Moravica
PY  - 1999
SP  - 63 
EP  -  66
VL  - 3
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_1999_3_1_a10/
ID  - MM3_1999_3_1_a10
ER  - 
%0 Journal Article
%A Dragomir Simeunović
%T A REMARK ON THE LOCATION OF THE ZEROS OF POLYNOMIALS
%J Mathematica Moravica
%D 1999
%P 63 - 66
%V 3
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_1999_3_1_a10/
%F MM3_1999_3_1_a10
Dragomir Simeunović. A REMARK ON THE LOCATION OF THE ZEROS OF POLYNOMIALS. Mathematica Moravica, Tome 3 (1999) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_1999_3_1_a10/