A REMARK ON THE LOCATION OF THE ZEROS OF POLYNOMIALS
Mathematica Moravica, Tome 3 (1999) no. 1.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper we determine, in the complex plane, regions containing the zeros of the polynomial $P(z)=z^n+a_1z^{n-1}+a_2z^{n-2}+ \dots +a_{n-1}z+a_n$, $n \geq 3$.
We also obtain two expressions which represent upper bounds for the moduli of the zeros of $P(z)$ with greater precision than those obtained by Cauchy and P. Montel.
@article{MM3_1999_3_1_a10, author = {Dragomir Simeunovi\'c}, title = {A {REMARK} {ON} {THE} {LOCATION} {OF} {THE} {ZEROS} {OF} {POLYNOMIALS}}, journal = {Mathematica Moravica}, pages = {63 - 66}, publisher = {mathdoc}, volume = {3}, number = {1}, year = {1999}, url = {https://geodesic-test.mathdoc.fr/item/MM3_1999_3_1_a10/} }
Dragomir Simeunović. A REMARK ON THE LOCATION OF THE ZEROS OF POLYNOMIALS. Mathematica Moravica, Tome 3 (1999) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_1999_3_1_a10/