STRICTLY CONVEX METRIC SPACES AND FIXED POINTS
Mathematica Moravica, Tome 3 (1999) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this article we examine strictly convex metric space and strictly convex metric space with convex round balls. These objects generalize well known concept of strictly convex Banach space. We prove fixed point theorems for nonexpansive, quasi-nonexpansive and asymptotically nonexpansive mappings in strictly convex metric space with convex round balls. These results extend previous result of R. de Marr, F. E. Browder, W. A. Kirk, K. Goebel, W. G. Dotson, T. C. Lim and some others.
@article{MM3_1999_3_1_a1,
     author = {Inese Bula},
     title = {STRICTLY {CONVEX} {METRIC} {SPACES} {AND} {FIXED} {POINTS}},
     journal = {Mathematica Moravica},
     pages = {5 - 16},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1999},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_1999_3_1_a1/}
}
TY  - JOUR
AU  - Inese Bula
TI  - STRICTLY CONVEX METRIC SPACES AND FIXED POINTS
JO  - Mathematica Moravica
PY  - 1999
SP  - 5 
EP  -  16
VL  - 3
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_1999_3_1_a1/
ID  - MM3_1999_3_1_a1
ER  - 
%0 Journal Article
%A Inese Bula
%T STRICTLY CONVEX METRIC SPACES AND FIXED POINTS
%J Mathematica Moravica
%D 1999
%P 5 - 16
%V 3
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_1999_3_1_a1/
%F MM3_1999_3_1_a1
Inese Bula. STRICTLY CONVEX METRIC SPACES AND FIXED POINTS. Mathematica Moravica, Tome 3 (1999) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_1999_3_1_a1/