NEW GEOMETRIC FIXED POINT THEOREMS
Mathematica Moravica, Tome 2 (1998) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper it is proved the following main result that if $T$ is a self-map on a complete metric space $X, \rho$ and if there exists an upper semicontinuous bounded above function $G: X \to R$ such that $\rho [x,Tx] \leq G(Tx)-G(x)$ for every $x \in X$, then $T$ has a fixed point in $X$. This paper presents and some other results of this type.
@article{MM3_1998_2_1_a11,
     author = {Milan Taskovi\'c},
     title = {NEW {GEOMETRIC} {FIXED} {POINT} {THEOREMS}},
     journal = {Mathematica Moravica},
     pages = {143 - 148},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {1998},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_1998_2_1_a11/}
}
TY  - JOUR
AU  - Milan Tasković
TI  - NEW GEOMETRIC FIXED POINT THEOREMS
JO  - Mathematica Moravica
PY  - 1998
SP  - 143 
EP  -  148
VL  - 2
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_1998_2_1_a11/
ID  - MM3_1998_2_1_a11
ER  - 
%0 Journal Article
%A Milan Tasković
%T NEW GEOMETRIC FIXED POINT THEOREMS
%J Mathematica Moravica
%D 1998
%P 143 - 148
%V 2
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_1998_2_1_a11/
%F MM3_1998_2_1_a11
Milan Tasković. NEW GEOMETRIC FIXED POINT THEOREMS. Mathematica Moravica, Tome 2 (1998) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_1998_2_1_a11/