NEW GEOMETRIC FIXED POINT THEOREMS
Mathematica Moravica, Tome 2 (1998) no. 1.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper it is proved the following main result that if $T$ is a self-map on a complete metric space $X, \rho$ and if there exists an upper semicontinuous bounded above function $G: X \to R$ such that $\rho [x,Tx] \leq G(Tx)-G(x)$ for every $x \in X$, then $T$ has a fixed point in $X$. This paper presents and some other results of this type.
@article{MM3_1998_2_1_a11, author = {Milan Taskovi\'c}, title = {NEW {GEOMETRIC} {FIXED} {POINT} {THEOREMS}}, journal = {Mathematica Moravica}, pages = {143 - 148}, publisher = {mathdoc}, volume = {2}, number = {1}, year = {1998}, url = {https://geodesic-test.mathdoc.fr/item/MM3_1998_2_1_a11/} }
Milan Tasković. NEW GEOMETRIC FIXED POINT THEOREMS. Mathematica Moravica, Tome 2 (1998) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_1998_2_1_a11/