Non-isomorphic Affine Finites $\langle Bb,E \rangle$-nets
Mathematica Moravica, Tome 1 (1997) no. 1.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
It is known that for each $n\in \mathbb{N}$ there exist affine finites $\langle Nn,E\rangle$-nets $(A_{n-1}(n,q),\parallel )$ with parameters $(q,q^{n-1}+q^{n-2}+\cdots+q+1,q^{n-2})$, where $q$ is prime power. In the paper we prove that for each $n\in\mathbb{N}$, $n>2$ and any prime power $q$ there exist non-isomorphic affine finites $\langle Nn,E\rangle$-nets with equal parameters $(q,q^{n-1}+q^{n-2}+\cdots+q+1,q^{n-2})$.
@article{MM3_1997_1_1_a9, author = {Alija Mandak}, title = {Non-isomorphic {Affine} {Finites} $\langle Bb,E \rangle$-nets}, journal = {Mathematica Moravica}, pages = {59 - 63}, publisher = {mathdoc}, volume = {1}, number = {1}, year = {1997}, url = {https://geodesic-test.mathdoc.fr/item/MM3_1997_1_1_a9/} }
Alija Mandak. Non-isomorphic Affine Finites $\langle Bb,E \rangle$-nets. Mathematica Moravica, Tome 1 (1997) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_1997_1_1_a9/