Non-isomorphic Affine Finites $\langle Bb,E \rangle$-nets
Mathematica Moravica, Tome 1 (1997) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

It is known that for each $n\in \mathbb{N}$ there exist affine finites $\langle Nn,E\rangle$-nets $(A_{n-1}(n,q),\parallel )$ with parameters $(q,q^{n-1}+q^{n-2}+\cdots+q+1,q^{n-2})$, where $q$ is prime power. In the paper we prove that for each $n\in\mathbb{N}$, $n>2$ and any prime power $q$ there exist non-isomorphic affine finites $\langle Nn,E\rangle$-nets with equal parameters $(q,q^{n-1}+q^{n-2}+\cdots+q+1,q^{n-2})$.
@article{MM3_1997_1_1_a9,
     author = {Alija Mandak},
     title = {Non-isomorphic {Affine} {Finites} $\langle Bb,E \rangle$-nets},
     journal = {Mathematica Moravica},
     pages = {59 - 63},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1997},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_1997_1_1_a9/}
}
TY  - JOUR
AU  - Alija Mandak
TI  - Non-isomorphic Affine Finites $\langle Bb,E \rangle$-nets
JO  - Mathematica Moravica
PY  - 1997
SP  - 59 
EP  -  63
VL  - 1
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_1997_1_1_a9/
ID  - MM3_1997_1_1_a9
ER  - 
%0 Journal Article
%A Alija Mandak
%T Non-isomorphic Affine Finites $\langle Bb,E \rangle$-nets
%J Mathematica Moravica
%D 1997
%P 59 - 63
%V 1
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_1997_1_1_a9/
%F MM3_1997_1_1_a9
Alija Mandak. Non-isomorphic Affine Finites $\langle Bb,E \rangle$-nets. Mathematica Moravica, Tome 1 (1997) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_1997_1_1_a9/