A Directly Extension of Caristi Fixed Point Theorem
Mathematica Moravica, Tome 1 (1997) no. 1.
Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper it is proved that if $T$ is a self-map on a complete metric space $(X,\rho)$ and if there exist a lower semicontinuous function $G:\to \mathbb{R}_{+}^{0}$ and an arbitrary fixed integer $k\geq 0$ such that $\rho[x,Tx]\leq G(x)-G(Tx)+\cdots +G(T^{2k}x)-G(T^{2k+1}x)$ and $G(T^{2i+1}x)\leq G(T^{2i}x)$ for $i=0,1,\ldots,k$ and for every $x\in X$, then $T$ has a fixed point $\xi$ in $X$.
@article{MM3_1997_1_1_a16, author = {Milan Taskovi\'c}, title = {A {Directly} {Extension} of {Caristi} {Fixed} {Point} {Theorem}}, journal = {Mathematica Moravica}, pages = {105 - 108}, publisher = {mathdoc}, volume = {1}, number = {1}, year = {1997}, url = {https://geodesic-test.mathdoc.fr/item/MM3_1997_1_1_a16/} }
Milan Tasković. A Directly Extension of Caristi Fixed Point Theorem. Mathematica Moravica, Tome 1 (1997) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_1997_1_1_a16/