A Directly Extension of Caristi Fixed Point Theorem
Mathematica Moravica, Tome 1 (1997) no. 1.

Voir la notice de l'article dans eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper it is proved that if $T$ is a self-map on a complete metric space $(X,\rho)$ and if there exist a lower semicontinuous function $G:\to \mathbb{R}_{+}^{0}$ and an arbitrary fixed integer $k\geq 0$ such that $\rho[x,Tx]\leq G(x)-G(Tx)+\cdots +G(T^{2k}x)-G(T^{2k+1}x)$ and $G(T^{2i+1}x)\leq G(T^{2i}x)$ for $i=0,1,\ldots,k$ and for every $x\in X$, then $T$ has a fixed point $\xi$ in $X$.
@article{MM3_1997_1_1_a16,
     author = {Milan Taskovi\'c},
     title = {A {Directly} {Extension} of {Caristi} {Fixed} {Point} {Theorem}},
     journal = {Mathematica Moravica},
     pages = {105 - 108},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1997},
     url = {https://geodesic-test.mathdoc.fr/item/MM3_1997_1_1_a16/}
}
TY  - JOUR
AU  - Milan Tasković
TI  - A Directly Extension of Caristi Fixed Point Theorem
JO  - Mathematica Moravica
PY  - 1997
SP  - 105 
EP  -  108
VL  - 1
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MM3_1997_1_1_a16/
ID  - MM3_1997_1_1_a16
ER  - 
%0 Journal Article
%A Milan Tasković
%T A Directly Extension of Caristi Fixed Point Theorem
%J Mathematica Moravica
%D 1997
%P 105 - 108
%V 1
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MM3_1997_1_1_a16/
%F MM3_1997_1_1_a16
Milan Tasković. A Directly Extension of Caristi Fixed Point Theorem. Mathematica Moravica, Tome 1 (1997) no. 1. https://geodesic-test.mathdoc.fr/item/MM3_1997_1_1_a16/