Design of a molecular dynamics model for high-performance computing of conformational changes in microtubule protofilaments associated with the anticancer drug taxol
Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 1, pp. 105-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

Molecular dynamics models of tubulin tetramers in complex with the anticancer drug taxol were created based on high-resolution spatial structures (PDB ID 3J6G). We tested performance of various computational architectures in molecular dynamics calculations of tubulin tetramers. We revealed the optimal computer architecture and carried out three 1 μs molecular dynamic trajectories of taxol-bound tubulin tetramer. We analyzed the conformational flexibility of tubulin tetramers in a complex with taxol, calculated the Euler angles for intra- and inter-dimer interfaces of the protofilament, as well as the degree and direction of protofilament bending. The stiffness of protofilaments was studied using the energy equipartition theorem. The results allowed us to conclude that taxol binding reduces stiffness at both the inter- and intra-dimer interfaces, which may facilitate the process of microtubule assembly.
@article{MBB_2023_18_1_a0,
     author = {V. A. Fedorov and E. G. Kholina and M. F. Bulatov and I. B. Kovalenko},
     title = {Design of a molecular dynamics model for high-performance computing of conformational changes in microtubule protofilaments associated with the anticancer drug taxol},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {105--112},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2023},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/MBB_2023_18_1_a0/}
}
TY  - JOUR
AU  - V. A. Fedorov
AU  - E. G. Kholina
AU  - M. F. Bulatov
AU  - I. B. Kovalenko
TI  - Design of a molecular dynamics model for high-performance computing of conformational changes in microtubule protofilaments associated with the anticancer drug taxol
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2023
SP  - 105
EP  - 112
VL  - 18
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MBB_2023_18_1_a0/
LA  - en
ID  - MBB_2023_18_1_a0
ER  - 
%0 Journal Article
%A V. A. Fedorov
%A E. G. Kholina
%A M. F. Bulatov
%A I. B. Kovalenko
%T Design of a molecular dynamics model for high-performance computing of conformational changes in microtubule protofilaments associated with the anticancer drug taxol
%J Matematičeskaâ biologiâ i bioinformatika
%D 2023
%P 105-112
%V 18
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MBB_2023_18_1_a0/
%G en
%F MBB_2023_18_1_a0
V. A. Fedorov; E. G. Kholina; M. F. Bulatov; I. B. Kovalenko. Design of a molecular dynamics model for high-performance computing of conformational changes in microtubule protofilaments associated with the anticancer drug taxol. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 1, pp. 105-112. https://geodesic-test.mathdoc.fr/item/MBB_2023_18_1_a0/

[1] S. Pall, A. Zhmurov, P. Bauer, M. Abraham, M. Lundborg, A. Gray, M. Lundborg, A. Gray, B. Hess, E. Lindahl, “Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS”, J. Chem. Phys., 153:13 (2020), 134110 | DOI

[2] V. A. Fedorov, E. G. Kholina, I. B. Kovalenko, N. B. Gudimchuk, “Performance analysis of different computational architectures: Molecular dynamics in application to protein assemblies, illustrated by microtubule and electron transfer proteins”, Supercomput. Front. Innov., 5:4 (2018), 111–114 | DOI

[3] V. A. Fedorov, E. G. Kholina, I. B. Kovalenko, N. B. Gudimchuk, P. S. Orekhov, A. A. Zhmurov, “Update on Performance Analysis of Different Computational Architectures: Molecular Dynamics in Application to Protein-Protein Interactions”, Supercomput. Front. Innov., 7:4 (2020), 62–67 | DOI | MR

[4] M. Kavallaris, “Microtubules and resistance to tubulin-binding agents”, Nat. Rev. Cancer, 10:3 (2010), 194–204 | DOI

[5] M. A. Jordan, L. Wilson, “Microtubules as a target for anticancer drugs”, Nat. Rev. Cancer, 4:4 (2004), 253–265 | DOI

[6] V. A. Fedorov, P. S. Orekhov, E. G. Kholina, A. A. Zhmurov, F. I. Ataullakhanov, I. B. Kovalenko, N. B. Gudimchuk, “Mechanical properties of tubulin intra- and inter- dimer interfaces and their implications for microtubule dynamic instability”, PLoS Comput. Biol., 15:8 (2019), e1007327 | DOI

[7] G. M. Alushin, G. C. Lander, E. H. Kellogg, R. Zhang, D. Baker, E. Nogales, “High resolution microtubule structures reveal the structural transitions in $\alpha\beta$-tubulin upon GTP hydrolysis”, Cell, 157:5 (2014), 1117–1129 | DOI

[8] B. Webb, A. Sali, “Comparative protein structure modeling using MODELLER”, Curr. Protoc. Bioinformatics, 54:1 (2016), 5–6 | DOI | MR

[9] M. H.M. Olsson, C. R. Sondergaard, M. Rostkowski, J. H. Jensen, “PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions”, J. Chem. Theory Comput, 7:2 (2011), 525–537 | DOI

[10] A. Morozenko, Stuchebrukhov A. A., “Dowser++, a new method of hydrating protein structures”, Proteins, 84:10 (2016), 1347–1357 | DOI

[11] A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy et al, “All-atom empirical potential for molecular modeling and dynamics studies of proteins”, J. Phys. Chem. B, 102:18 (1998), 3586–3616 | DOI

[12] A. D. Jr. MacKerell, M. Feig, C. L. Brooks, “Improved treatment of the protein backbone in empirical force fields”, J. Am. Chem. Soc., 126:3 (2004), 698–699 | DOI