Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2020_15_1_a1, author = {M. N. Ustinin and S. D. Rykunov and A. I. Boyko and O. A. Maslova}, title = {Reconstruction of the human brain functional structure based on the electroencephalography data}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {106--117}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2020}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/MBB_2020_15_1_a1/} }
TY - JOUR AU - M. N. Ustinin AU - S. D. Rykunov AU - A. I. Boyko AU - O. A. Maslova TI - Reconstruction of the human brain functional structure based on the electroencephalography data JO - Matematičeskaâ biologiâ i bioinformatika PY - 2020 SP - 106 EP - 117 VL - 15 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/MBB_2020_15_1_a1/ LA - ru ID - MBB_2020_15_1_a1 ER -
%0 Journal Article %A M. N. Ustinin %A S. D. Rykunov %A A. I. Boyko %A O. A. Maslova %T Reconstruction of the human brain functional structure based on the electroencephalography data %J Matematičeskaâ biologiâ i bioinformatika %D 2020 %P 106-117 %V 15 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/MBB_2020_15_1_a1/ %G ru %F MBB_2020_15_1_a1
M. N. Ustinin; S. D. Rykunov; A. I. Boyko; O. A. Maslova. Reconstruction of the human brain functional structure based on the electroencephalography data. Matematičeskaâ biologiâ i bioinformatika, Tome 15 (2020) no. 1, pp. 106-117. https://geodesic-test.mathdoc.fr/item/MBB_2020_15_1_a1/
[1] H. H. Jasper, “Report of the committee on methods of clinical examination in electroencephalography”, Electroencephalography and Clinical Neurophysiology, 10:2 (1958), 370–375 | DOI
[2] D. Goldman, “The clinical use of the “average” reference electrode in monopolar recording”, Electroencephalogr. Clin. Neurophysiol., 2 (1950), 209–212 | DOI
[3] C. M. Michel, D. Brunet, “EEG Source Imaging: A Practical Review of the Analysis Steps”, Front. Neurol., 10 (2019), 325 | DOI
[4] P. Krauss, A. Schilling, J. Bauer, K. Tziridis, C. Metzner, H. Schulze, M. Traxdorf, “Analysis of Multichannel EEG Patterns During Human Sleep: A Novel Approach”, Front. Hum. Neurosci., 12 (2018), 121 | DOI
[5] S. J. M. Smith, “EEG in the diagnosis, classification, and management of patients with epilepsy”, Journal of Neurology, Neurosurgery Psychiatry, 76 (2005), ii2–ii7 | DOI
[6] H. Bin Yoo, E. O.d. l. Concha, D. De Ridder, B. A. Pickut, S. Vanneste, “The Functional Alterations in Top-Down Attention Streams of Parkinson-s disease Measured by EEG”, Sci. Rep., 8 (2018), 10609 | DOI
[7] U. Smailovic, V. Jelic, “Neurophysiological Markers of Alzheimer's Disease: Quantitative EEG Approach”, Neurol. Ther., 8 (2019), 37–55 | DOI
[8] A. V. Bocharov, G. G. Knyazev, A. N. Savostyanov, T. N. Astakhova, S. S. Tamozhnikov, “EEG dynamics of spontaneous stimulus-independent thoughts”, Cogn. Neurosci., 10:2 (2019), 77–87 | DOI
[9] H. Berger, “Über das elektroenkephalogramm des menschen”, Arch. Psychiatr. Nervenkrankh., 87 (1929), 527–570 | DOI
[10] M. Halgren, I. Ulbert, H. Bastuji, D. Fabó, L. Erőss, M. Rey, O. Devinsky, W. K. Doyle, R. Mak-McCully, E. Halgren, L. Wittner, P. Chauvel, G. Heit, E. Eskandar, A. Mandell, S. S. Cash, “The generation and propagation of the human alpha rhythm”, PNAS, 116:47 (2019), 23772–23782 | DOI
[11] E. Basar, “A review of alpha activity in integrative brain function: fundamental physiology, sensory coding, cognition and pathology”, Int. J. Psychophysiol., 86:1 (2012), 1–24 | DOI
[12] P. L. Nunez, B. M. Wingeier, R. B. Silberstein, “Spatial-temporal structures of human alpha rhythms: theory, microcurrent sources, multiscale measurements, and global binding of local networks”, Hum. Brain. Mapp., 13 (2001), 125–164 | DOI
[13] E. Barzegaran, V. Y. Vildavski, M. G. Knyazeva, “Fine Structure of Posterior Alpha Rhythm in Human EEG: Frequency Components, Their Cortical Sources, and Temporal Behavior”, Sci. Rep., 7 (2017), 8249 | DOI
[14] E. Olejarczyk, P. Bogucki, A. Sobieszek, “The EEG Split Alpha Peak: Phenomenological Origins and Methodological Aspects of Detection and Evaluation”, Front. Neurosci., 11 (2017), 506 | DOI
[15] R. R. Llinás, M. N. Ustinin, Precise Frequency-Pattern Analysis to Decompose Complex Systems into Functionally Invariant Entities, US Patent App. Publ. 20160012011 A1 01/14/2016
[16] R. R. Llinás, M. N. Ustinin, “Frequency-pattern functional tomography of magnetoencephalography data allows new approach to the study of human brain organization”, Front. Neural Circuits, 8 (2014), 43 | DOI
[17] R. R. Llinás, M. N. Ustinin, S. D. Rykunov, A. I. Boyko, V. V. Sychev, K. D. Walton, G. M. Rabello, J. Garcia, “Reconstruction of human brain spontaneous activity based on frequency-pattern analysis of magnetoencephalography data”, Front. Neurosci., 9 (2015) | DOI
[18] R. R. Llinás, M. Ustinin, S. Rykunov, K. D. Walton, G. M. Rabello, J. Garcia, A. Boyko, V. Sychev, “Noninvasive muscle activity imaging using magnetography”, PNAS, 117:9 (2020), 4942–4947 | DOI
[19] R. R. Llinás, M. Ustinin, S. Rykunov, K. D. Walton, G. M. Rabello, J. Garcia, A. Boyko, V. Sychev, “Data from “Noninvasive muscle activity imaging using magnetography””, Open Science Framework, 2019 | DOI
[20] Project BCI EEG motor activity data set: Brain Computer Interface research at NUST Pakistan, (accessed 12.04.2020) https://sites.google.com/site/projectbci/
[21] C. J. Holmes, R. Hoge, L. Collins, R. Woods, A. W. Toga, A. C. Evans, “Enhancement of MR images using registration for signal averaging”, J. Comput. Assist. Tomogr., 22:2 (1998), 324–33 | DOI
[22] F. Tadel, S. Baillet, J. C. Mosher, D. Pantazis, R. M. Leahy, “Brainstorm: A User-Friendly Application for MEG/EEG Analysis”, Computational Intelligence and Neuroscience, 2011 (2011), 879716 | DOI
[23] M. Frigo, S. G. Johnson, “The Design and Implementation of FFTW3”, Proceedings of the IEEE, 93:2 (2005), 216–231 | DOI
[24] A. Belouchrani, K. Abed-Meraim, J. F. Cardoso, E. Moulines, “A blind source separation technique using second-order statistics”, IEEE Trans. Signal Processing, 45 (1997), 434–444 | DOI
[25] J. C. Mosher, R. M. Leahy, P. S. Lewis, “EEG and MEG: forward solutions for inverse methods”, IEEE Transactions on Biomedical Engineering, 46:3 (1999), 245–259 | DOI | MR
[26] M. N. Ustinin, S. D. Rykunov, A. I. Boiko, O. A. Maslova, K. D. Volton, R. R. Linas, “Otsenka napravlenii elementarnykh istochnikov alfa-ritma metodom funktsionalnoi tomografii mozga cheloveka po dannym magnitnoi entsefalografii”, Matematicheskaya biologiya i bioinformatika, 13:2 (2018), 426–436 | DOI
[27] V. M. Verkhlyutov, Schuchkin Yu.V, V. L. Ushakov, V. B. Strelets, Yu. A. Pirogov, “Otsenka lokalizatsii i dipolnogo momenta istochnikov alfa i teta ritmov EEG s ispolzovaniem klasternogo analiza v norme i u bolnykh shizofreniei”, Zhurn. vyssh. nervn. deyat., 56:1 (2006), 47–55
[28] V. Montes-Restrepo, P. Van Mierlo, G. Strobbe, S. Staelens, S. Vandenberghe, H. Hallez, “Influence of skull modeling approaches on EEG source localization”, Brain Topography, 27 (2014), 95–111 | DOI
[29] Y. Huang, L. C. Parra, S. Haufe, “The NewYork Head — a precise standardized volume conductor model for EEG source localization and tES targeting”, NeuroImage, 140 (2016), 150–162 | DOI
[30] Y. Céspedes-Villar, J. D. Martinez-Vargas, G. Castellanos-Dominguez, “Influence of patient-specific head modeling on EEG source imaging”, Computational and Mathematical Methods in Medicine, 2020, 5076865 | DOI
[31] L. Koessler, L. Maillard, A. Benhadid, J. P. Vignal, M. Braun, H. Vespignani, “Spatial localization of EEG electrodes”, Neurophysiol. Clin., 37:2 (2007), 97–102 | DOI
[32] S. Chen, Y. He, H. Qiu, X. Yan, M. Zhao, “Spatial Localization of EEG Electrodes in a TOF+CCD Camera System”, Front. Neuroinform, 13 (2019), 21 | DOI
[33] G. A. Taberna, M. Marino, M. Ganzetti, D. Mantini, “Spatial localization of EEG electrodes using 3D scanning”, J. Neural Eng., 16:2 (2019), 026020 | DOI
[34] S. D. Rykunov, E. D. Rykunova, A. I. Boiko, M. N. Ustinin, “Programmnyi kompleks «VirtEl» dlya analiza dannykh magnitnoi entsefalografii metodom virtualnykh elektrodov”, Matematicheskaya biologiya i bioinformatika, 14:1 (2019), 340–354 | DOI