Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2017_12_1_a2, author = {R. K. Tetuev and M. I. Pyatkov and A. N. Pankratov}, title = {Parallel algorithm for global alignment of long aminoacid and nucleotide sequences}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {137--150}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2017}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/MBB_2017_12_1_a2/} }
TY - JOUR AU - R. K. Tetuev AU - M. I. Pyatkov AU - A. N. Pankratov TI - Parallel algorithm for global alignment of long aminoacid and nucleotide sequences JO - Matematičeskaâ biologiâ i bioinformatika PY - 2017 SP - 137 EP - 150 VL - 12 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/MBB_2017_12_1_a2/ LA - ru ID - MBB_2017_12_1_a2 ER -
%0 Journal Article %A R. K. Tetuev %A M. I. Pyatkov %A A. N. Pankratov %T Parallel algorithm for global alignment of long aminoacid and nucleotide sequences %J Matematičeskaâ biologiâ i bioinformatika %D 2017 %P 137-150 %V 12 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/MBB_2017_12_1_a2/ %G ru %F MBB_2017_12_1_a2
R. K. Tetuev; M. I. Pyatkov; A. N. Pankratov. Parallel algorithm for global alignment of long aminoacid and nucleotide sequences. Matematičeskaâ biologiâ i bioinformatika, Tome 12 (2017) no. 1, pp. 137-150. https://geodesic-test.mathdoc.fr/item/MBB_2017_12_1_a2/
[1] Oplachko E. S., Ustinin D. M., Ustinin M. N., “Cloud Computing Technologies and their Application in Problems of Computational Biology”, Mathematical Biology and Bioinformatics, 8:2 (2013), 449–466 (in Russ.) | DOI
[2] Daugelaite J., O'Driscoll A., Sleator R., “An Overview of Multiple Sequence Alignments and Cloud Computing in Bioinformatics”, ISRN Biomathematics, 2013 (2013), 1–14 | DOI
[3] Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T. L., “BLAST+: architecture and applications”, BMC Bioinformatics, 10 (2009), 421 | DOI
[4] Needleman S., Wunsch C., “A general method applicable to the search for similarities in the amino acid sequence of two proteins”, J. Mol. Biol., 48:3 (1970), 443–453 | DOI
[5] Pankratov A., Pyatkov M., Tetuev R., Nazipova N., Dedus F. F., “Search for Extended Repeats in Genomes Based on the Spectral-Analytical Method”, Mathematical Biology and Bioinformatics, 7:2 (2012), 476–492 (in Russ.) | DOI
[6] Pyatkov M. I., Pankratov A. N., “SBARS: fast creation of dotplots for DNA sequences on different scales using GA-,GC-content”, Bioinformatics, 30:12 (2014), 1765–1766 | DOI
[7] NCBI BLAST: web site, (accessed 14 April 2017) https://blast.ncbi.nlm.nih.gov/Blast.cgi
[8] Rice P., Longden I., Bleasby A., “EMBOSS: The European Molecular Biology Open Software Suite”, Trends in Genetics, 16:6 (2000), 276–277 | DOI
[9] Gotoh O., “An improved algorithm for matching biological sequences”, J. Mol. Biol., 162:3 (1982), 705–708 | DOI
[10] Press W., Teukolsky S., Vetterling W., Flannery B., Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, 2007, 1256 pp. | MR
[11] Myers E., Miller W., “Optimal alignments in linear space”, Comput. Appl. Biosci., 4:1 (1988), 11–17 | DOI
[12] Hirschberg D. S., “A linear space algorithm for computing maximal common subsequences”, Communications of the ACM, 18:6 (1975), 341–343 | DOI | MR
[13] Altschul S., Gish W., Miller W., Myers E., Lipman D., “Basic local alignment search tool”, J. Mol. Biol., 215 (1990), 403–410 | DOI
[14] Driga A., Lu P., Schaeffer J., Szafron D., Charter K., Parsons I., “FastLSA: A Fast, Linear-Space, Parallel and Sequential Algorithm for Sequence Alignment”, Algorithmica, 45 (2006), 337–375 | DOI | MR
[15] Chakraborty A., Bandyopadhyay S., “FOGSAA: Fast Optimal Global Sequence Alignment Algorithm”, Scientific Reports, 2013, no. 3, 1746 | DOI
[16] Loving J., Hernandez Y., Benson G., “BitPAl: a bit-parallel, general integer-scoring sequence alignment algorithm”, Bioinformatics, 30:22 (2014), 3166–3173 | DOI | MR
[17] Farrar M., “Striped Smith-Waterman speeds database searches six times over other SIMD implementations”, Bioinformatics, 23:2 (2007), 156–161 | DOI
[18] Huson D., Chao Xie C., “A poor man's BLASTX — high-throughput metagenomic protein database search using PAUDA”, Bioinformatics, 30:1 (2014), 38–39 | DOI
[19] Galvez S., Diaz D., Hernandez P., Esteban F. J., Caballero J. A., Dorado G., “Next-generation bioinformatics: using many-core processor architecture to develop a web service for sequence alignment”, Bioinformatics, 26 (2010), 683–686 | DOI
[20] Blom J., Jakobi T., Doppmeier D., Jaenicke S., Kalinowski J., Stoye J., Goesmann A., “Exact and complete short-read alignment to microbial genomes using Graphics Processing Unit programming”, Bioinformatics, 27 (2011), 1351–1358 | DOI
[21] Levenshtein V. I., “Binary codes capable of correcting deletions, insertions, and reversals”, Soviet Physics Doklady, 10 (1966), 707–710 | MR
[22] Dayhoff M., Schwartz R., Orcutt B., “A model of Evolutionary Change in Proteins”, Atlas of protein sequence and structure, 5 (1978), 345–358
[23] Henikoff S., Henikoff G., “Amino acid substitution matrices from protein blocks”, Proc. Natl. Acad. Sci. USA, 89:22 (1992), 10915–10919 | DOI
[24] Hamming R. W., “Error Detecting and Error Correcting Codes”, The Bell System Technical Journal, 29:2 (1950), 147–160 | DOI | MR
[25] Xuhua X., Bioinformatics and the Cell. Modern Computational Approaches in Genomics, Proteomics and Transcriptomics, Springer, 2007, 124–127
[26] Ibarra I., Melo F., “Interactive software tool to comprehend the calculation of optimal sequence alignments with dynamic programming”, Bioinformatics, 26:13 (2010), 1664–1669 | DOI