Computational Analysis of Hysteresis and Bistability in the Mitochondrial Respiratory Chain
Matematičeskaâ biologiâ i bioinformatika, Tome 9 (2014) no. 1, pp. 89-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

Quantitative analysis of bistability in operation of the respiratory chain was performed with the help a computational mechanistic model developed by us earlier. This study included numerical solving of a system of algebraic equations according to steady states in a system of differential equations comprising the computational model and analysis of a wide spectrum of steady-state solutions in the model. Detailed quantitative analysis of the mechanisms of appearance of hysteresis in steady-state characteristics that accords with bistability and conditions of availability of bistability in the entire respiratory chain during oxidation of NADH, succinate and NADH+succinate was carried out. It was shown that although hysteresis and bistability in respiratory chain operation during oxidation of NADH and succinate has the same kinetic mechanism, namely an apparent substrate inhibition of QH2 oxidation at the Qo-site of Complex III, conditions of bistability arising in respiratory chain fueled by succinate alone differ from those during oxidation of NADH or NADH + succinate because of a different QH2-dependence of the QH2 generation rate by Complex II and Complex I. The most important factors which affect occurrence of bistability in the respiratory chain during oxidation of NADH and NADH + succinate are the rates of NADH reduction in the matrix and the total concentration of Complex I [CI] and ubiquinone [Q]tot in the inner membrane. A high rate of NADH reduction and a high ratio [Cl]/[Q]tot are condition that would favorable for hysteresis and bistability. The mechanism of a drastic increase in ROS production due to bistable switches in the respiratory chain during hypoxia-reoxygenation suggested earlier by Selivanov and colleagues was analyzed. A computational simulation of hypoxia-reoxygentaion under condition of existence of bistability shows a considerable increase in the rate of ROS production if hypoxia induces a switch of the respiratory chain to the reduced steady state. However, no changes occur in the ROS production rate during reoxygenation following hypoxia compared to the initial state if the membrane potential drops during hypoxia keeping a high rate of respiration and oxidized steady state of the respiratory chain. This implies that additional mechanisms of a considerable increase in ROS production during hypoxia-reoxygentaion which initiate ROS-related cellular hypoxia-reoxygenation injury should be.
@article{MBB_2014_9_1_a6,
     author = {N. I. Markevich and J. B. Hoek},
     title = {Computational {Analysis} of {Hysteresis} and {Bistability} in the {Mitochondrial} {Respiratory} {Chain}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {89--111},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2014},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/MBB_2014_9_1_a6/}
}
TY  - JOUR
AU  - N. I. Markevich
AU  - J. B. Hoek
TI  - Computational Analysis of Hysteresis and Bistability in the Mitochondrial Respiratory Chain
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2014
SP  - 89
EP  - 111
VL  - 9
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MBB_2014_9_1_a6/
LA  - en
ID  - MBB_2014_9_1_a6
ER  - 
%0 Journal Article
%A N. I. Markevich
%A J. B. Hoek
%T Computational Analysis of Hysteresis and Bistability in the Mitochondrial Respiratory Chain
%J Matematičeskaâ biologiâ i bioinformatika
%D 2014
%P 89-111
%V 9
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MBB_2014_9_1_a6/
%G en
%F MBB_2014_9_1_a6
N. I. Markevich; J. B. Hoek. Computational Analysis of Hysteresis and Bistability in the Mitochondrial Respiratory Chain. Matematičeskaâ biologiâ i bioinformatika, Tome 9 (2014) no. 1, pp. 89-111. https://geodesic-test.mathdoc.fr/item/MBB_2014_9_1_a6/

[1] Droge W., Physiol. Rev., 82 (2002), 47–95

[2] Barja G., Trends Neurosci., 27 (2004), 595–600 | DOI

[3] Balaban R. S., Nemoto S., Finkel T., Cell., 120 (2005), 483–495 | DOI

[4] Andreyev A. Y., Kushnareva Y. E., Starkov A. A., Biochemistry, 70 (2005), 200–214

[5] Murphy M. P., Biochem. J., 417 (2009), 1–13 | DOI

[6] Bailey S. M., Cunningham C. C., Free. Radic. Biol. Med., 32 (2002), 11–16 | DOI

[7] Li C., Jackson R. M., Am. J. Physiol. Cell. Physiol., 282 (2002), C227–C241 | DOI

[8] Selivanov V. A., Votyakova T. V., Zeak J. A., Trucco M., Roca J., Cascante M., PLoS Comput. Biol., 5 (2009), e1000619 | DOI | MR

[9] Selivanov V. A., Votyakova T. V., Pivtoraiko V. N., Zeak J., Sukhomlin T., Trucco M., Roca J., Cascante M., PLoS Comput. Biol., 7 (2011), e1001115 | DOI

[10] Borisov N. M., Markevich N. I., Hoek J. B., Kholodenko B. N., Biophys. J., 89 (2005), 951–966 | DOI

[11] Yu C. A., Cen X., Ma H. W., Yin Y., Yu L., Esser L., Xia D., Biochim. Biophys. Acta, 1777 (2008), 1038–1043 | DOI

[12] Quinlan C. L., Gerencser A. A., Treberg J. R., Brand M. D., J. Biol. Chem., 286 (2011), 31361–31372 | DOI

[13] Markevich N. I., Hoek J. B., Mathematical Biology and Bioinformatics, 9:1 (2014), 63–88

[14] Batandier C., Guigas B., Detaille D., El-Mir M. Y., Fontaine E., Rigoulet M., Leverve X. M., J. Bioenerg. Biomembr., 38 (2006), 33–42 | DOI

[15] Hirst J., King M. S., Pryde K. R., Biochem. Soc. Trans., 36 (2008), 976–980 | DOI

[16] Sel'kov E. E., Eur. J. Biochem., 59 (1975), 151–157 | DOI

[17] Vinogradov A. D., Biochim. Biophys. Acta, 1364 (1998), 169–185 | DOI

[18] Moser C. C., Farid T. A., Chobot S. E., Dutton P. L., Biochim. Biophys. Acta, 1757 (2006), 1096–1109 | DOI

[19] Verkhovskaya M. L., Belevich N., Euro L., Wikstrom M., Verkhovsky M. I., Proc. Natl. Acad. Sci. USA, 105 (2008), 3763–3767 | DOI

[20] Grivennikova V. G., Vinogradov A. D., Biochim. Biophys. Acta, 682 (1982), 491–495 | DOI

[21] Clanton T., J. Appl. Physiol., 99 (2005), 1245–1246 | DOI

[22] Guzy R. D., Schumacker P. T., Exp. Physiol., 91 (2006), 807–819 | DOI

[23] Hoffman D. L., Brookes P. S., J. Biol. Chem., 284 (2009), 16236–16245 | DOI

[24] Beard D. A., PLoS Comput. Biol., 1 (2005), e36 | DOI

[25] Markevich N. I., Hoek J. B., Kholodenko B. N., J. Cell. Biol., 164 (2004), 353–359 | DOI