Multigrid method for numerical solution of ordinary differential equations
Mathematica Applicanda, Tome 21 (1992) no. 35.
Voir la notice de l'article dans European Digital Mathematics Library
We consider the initial value problem for systems of ordinary differential equations such that the solution vector can be split into subvectors and each subvector represented as a product of a scalar amplitude and a shape vector which changes slowly with time. The equations for the shape vectors can be solved with much larger time steps than those required for the original equations. The numerical results show that a substantial reduction in the computing time may be achieved
Mots-clés :
Initial value problems
@article{MA_1992__21_35_293210, author = {J. M. Kozakiewicz and J. R. Mika}, title = {Multigrid method for numerical solution of ordinary differential equations}, journal = {Mathematica Applicanda}, publisher = {mathdoc}, volume = {21}, number = {35}, year = {1992}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/MA_1992__21_35_293210/} }
TY - JOUR AU - J. M. Kozakiewicz AU - J. R. Mika TI - Multigrid method for numerical solution of ordinary differential equations JO - Mathematica Applicanda PY - 1992 VL - 21 IS - 35 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/MA_1992__21_35_293210/ LA - en ID - MA_1992__21_35_293210 ER -
J. M. Kozakiewicz; J. R. Mika. Multigrid method for numerical solution of ordinary differential equations. Mathematica Applicanda, Tome 21 (1992) no. 35. https://geodesic-test.mathdoc.fr/item/MA_1992__21_35_293210/