Properties of efficient sequential plans for a birth and death process
Mathematica Applicanda, Tome 9 (1981) no. 17.

Voir la notice de l'article dans European Digital Mathematics Library

A birth and death process with parameters θ=(λ,μ), λ>0, μ>0, is considered. The absolute continuity of measures generated by this process is proved. The Rao-Cramér inequality for the variance of the unbiased estimator of a function h(θ) is derived. Some properties of the estimator attaining the Rao-Cramér lower bound are asserted.
Mots-clés : Sequential estimation, Markov processes: estimation
@article{MA_1981__9_17_292930,
     author = {Roman R\'o\.za\'nski},
     title = {Properties of efficient sequential plans for a birth and death process},
     journal = {Mathematica Applicanda},
     publisher = {mathdoc},
     volume = {9},
     number = {17},
     year = {1981},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/MA_1981__9_17_292930/}
}
TY  - JOUR
AU  - Roman Różański
TI  - Properties of efficient sequential plans for a birth and death process
JO  - Mathematica Applicanda
PY  - 1981
VL  - 9
IS  - 17
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/MA_1981__9_17_292930/
LA  - en
ID  - MA_1981__9_17_292930
ER  - 
%0 Journal Article
%A Roman Różański
%T Properties of efficient sequential plans for a birth and death process
%J Mathematica Applicanda
%D 1981
%V 9
%N 17
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/MA_1981__9_17_292930/
%G en
%F MA_1981__9_17_292930
Roman Różański. Properties of efficient sequential plans for a birth and death process. Mathematica Applicanda, Tome 9 (1981) no. 17. https://geodesic-test.mathdoc.fr/item/MA_1981__9_17_292930/