@article{M2AN_1981__15_2_177_0,
author = {Valerio, Vladimiro},
title = {On the partitioned matrix $\begin{pmatrix}O&A\\A^\ast &Q\end{pmatrix}$ and its associated system $AX=T, A^\ast Y+QX = Z$},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {177--184},
publisher = {Centrale des revues, Dunod-Gauthier-Villars},
address = {Montreuil},
volume = {15},
number = {2},
year = {1981},
zbl = {0458.15003},
mrnumber = {618822},
language = {en},
url = {https://geodesic-test.mathdoc.fr/item/M2AN_1981__15_2_177_0/}
}
TY - JOUR
AU - Valerio, Vladimiro
TI - On the partitioned matrix $\begin{pmatrix}O&A\\A^\ast &Q\end{pmatrix}$ and its associated system $AX=T, A^\ast Y+QX = Z$
JO - ESAIM: Mathematical Modelling and Numerical Analysis
PY - 1981
SP - 177
EP - 184
VL - 15
IS - 2
PB - Centrale des revues, Dunod-Gauthier-Villars
PP - Montreuil
UR - https://geodesic-test.mathdoc.fr/item/M2AN_1981__15_2_177_0/
LA - en
ID - M2AN_1981__15_2_177_0
ER -
%0 Journal Article
%A Valerio, Vladimiro
%T On the partitioned matrix $\begin{pmatrix}O&A\\A^\ast &Q\end{pmatrix}$ and its associated system $AX=T, A^\ast Y+QX = Z$
%J ESAIM: Mathematical Modelling and Numerical Analysis
%D 1981
%P 177-184
%V 15
%N 2
%I Centrale des revues, Dunod-Gauthier-Villars
%C Montreuil
%U https://geodesic-test.mathdoc.fr/item/M2AN_1981__15_2_177_0/
%G en
%F M2AN_1981__15_2_177_0
Valerio, Vladimiro. On the partitioned matrix $\begin{pmatrix}O&A\\A^\ast &Q\end{pmatrix}$ and its associated system $AX=T, A^\ast Y+QX = Z$. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 15 (1981) no. 2, pp. 177-184. https://geodesic-test.mathdoc.fr/item/M2AN_1981__15_2_177_0/