Two dimensional probabilities with a given conditional structure
Kybernetika, Tome 35 (1999) no. 3, p. [367].

Voir la notice de l'article dans Czech Digital Mathematics Library

A properly measurable set PX×M1(Y) (where X,Y are Polish spaces and M1(Y) is the space of Borel probability measures on Y) is considered. Given a probability distribution λM1(X) the paper treats the problem of the existence of X×Y-valued random vector (ξ,η) for which L(ξ)=λ and L(η|ξ=x)Px λ-almost surely that possesses moreover some other properties such as “L(ξ,η) has the maximal possible support” or “L(η|ξ=x)’s are extremal measures in Px’s”. The paper continues the research started in [7].
Classification : 28A35, 60A10, 60B05, 60E05
Mots-clés : two-dimensional probabilities; extremal measure
@article{KYB_1999__35_3_a5,
     author = {\v{S}t\v{e}p\'an, Josef and Hlubinka, Daniel},
     title = {Two dimensional probabilities with a given conditional structure},
     journal = {Kybernetika},
     pages = {[367]},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {1999},
     mrnumber = {1704672},
     zbl = {1274.60014},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/KYB_1999__35_3_a5/}
}
TY  - JOUR
AU  - Štěpán, Josef
AU  - Hlubinka, Daniel
TI  - Two dimensional probabilities with a given conditional structure
JO  - Kybernetika
PY  - 1999
SP  - [367]
VL  - 35
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/KYB_1999__35_3_a5/
LA  - en
ID  - KYB_1999__35_3_a5
ER  - 
%0 Journal Article
%A Štěpán, Josef
%A Hlubinka, Daniel
%T Two dimensional probabilities with a given conditional structure
%J Kybernetika
%D 1999
%P [367]
%V 35
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/KYB_1999__35_3_a5/
%G en
%F KYB_1999__35_3_a5
Štěpán, Josef; Hlubinka, Daniel. Two dimensional probabilities with a given conditional structure. Kybernetika, Tome 35 (1999) no. 3, p. [367]. https://geodesic-test.mathdoc.fr/item/KYB_1999__35_3_a5/