On the concept of the asymptotic Rényi distances for random fields
Kybernetika, Tome 35 (1999) no. 3, p. [353].

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The asymptotic Rényi distances are explicitly defined and rigorously studied for a convenient class of Gibbs random fields, which are introduced as a natural infinite-dimensional generalization of exponential distributions.
Classification : 60G60, 60K35, 62B10, 62M40, 82B05
@article{KYB_1999__35_3_a4,
     author = {Jan\v{z}ura, Martin},
     title = {On the concept of the asymptotic {R\'enyi} distances for random fields},
     journal = {Kybernetika},
     pages = {[353]},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {1999},
     mrnumber = {1704671},
     zbl = {1274.62061},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/KYB_1999__35_3_a4/}
}
TY  - JOUR
AU  - Janžura, Martin
TI  - On the concept of the asymptotic Rényi distances for random fields
JO  - Kybernetika
PY  - 1999
SP  - [353]
VL  - 35
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/KYB_1999__35_3_a4/
LA  - en
ID  - KYB_1999__35_3_a4
ER  - 
%0 Journal Article
%A Janžura, Martin
%T On the concept of the asymptotic Rényi distances for random fields
%J Kybernetika
%D 1999
%P [353]
%V 35
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/KYB_1999__35_3_a4/
%G en
%F KYB_1999__35_3_a4
Janžura, Martin. On the concept of the asymptotic Rényi distances for random fields. Kybernetika, Tome 35 (1999) no. 3, p. [353]. https://geodesic-test.mathdoc.fr/item/KYB_1999__35_3_a4/