The Rényi distances of Gaussian measures
Kybernetika, Tome 35 (1999) no. 3, p. [333].

Voir la notice de l'article dans Czech Digital Mathematics Library

The author in the paper evaluates the Rényi distances between two Gaussian measures using properties of nuclear operators and expresses the formula for the asymptotic rate of the Rényi distances of stationary Gaussian measures by the corresponding spectral density functions in a general case.
Classification : 46N30, 60G10, 60G15, 60G30, 62B10
@article{KYB_1999__35_3_a3,
     author = {Mich\'alek, Ji\v{r}{\'\i}},
     title = {The {R\'enyi} distances of {Gaussian} measures},
     journal = {Kybernetika},
     pages = {[333]},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {1999},
     mrnumber = {1704670},
     zbl = {1274.62065},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/KYB_1999__35_3_a3/}
}
TY  - JOUR
AU  - Michálek, Jiří
TI  - The Rényi distances of Gaussian measures
JO  - Kybernetika
PY  - 1999
SP  - [333]
VL  - 35
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/KYB_1999__35_3_a3/
LA  - en
ID  - KYB_1999__35_3_a3
ER  - 
%0 Journal Article
%A Michálek, Jiří
%T The Rényi distances of Gaussian measures
%J Kybernetika
%D 1999
%P [333]
%V 35
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/KYB_1999__35_3_a3/
%G en
%F KYB_1999__35_3_a3
Michálek, Jiří. The Rényi distances of Gaussian measures. Kybernetika, Tome 35 (1999) no. 3, p. [333]. https://geodesic-test.mathdoc.fr/item/KYB_1999__35_3_a3/