Reachability and observability of linear systems over max-plus
Kybernetika, Tome 35 (1999) no. 1, p. [2].

Voir la notice de l'article dans Czech Digital Mathematics Library

This paper discusses the properties of reachability and observability for linear systems over the max-plus algebra. Working in the event-domain, the concept of asticity is used to develop conditions for weak reachability and weak observability. In the reachability problem, residuation is used to determine if a state is reachable and to generate the required control sequence to reach it. In the observability problem, residuation is used to estimate the state. Finally, as in the continuous-variable case, a duality is shown to exist between the two properties.
Classification : 15A80, 93B03, 93B05, 93B07, 93B25, 93C65, 93C83
Mots-clés : reachability; observability; linear system; max-plus algebra
@article{KYB_1999__35_1_a1,
     author = {Gazarik, Michael J. and Kamen, Edward W.},
     title = {Reachability and observability of linear systems over max-plus},
     journal = {Kybernetika},
     pages = {[2]},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {1999},
     mrnumber = {1705526},
     zbl = {1274.93037},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/KYB_1999__35_1_a1/}
}
TY  - JOUR
AU  - Gazarik, Michael J.
AU  - Kamen, Edward W.
TI  - Reachability and observability of linear systems over max-plus
JO  - Kybernetika
PY  - 1999
SP  - [2]
VL  - 35
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/KYB_1999__35_1_a1/
LA  - en
ID  - KYB_1999__35_1_a1
ER  - 
%0 Journal Article
%A Gazarik, Michael J.
%A Kamen, Edward W.
%T Reachability and observability of linear systems over max-plus
%J Kybernetika
%D 1999
%P [2]
%V 35
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/KYB_1999__35_1_a1/
%G en
%F KYB_1999__35_1_a1
Gazarik, Michael J.; Kamen, Edward W. Reachability and observability of linear systems over max-plus. Kybernetika, Tome 35 (1999) no. 1, p. [2]. https://geodesic-test.mathdoc.fr/item/KYB_1999__35_1_a1/