On a critical point theory for minimal surfaces spanning a wire in Rn.
Journal für die reine und angewandte Mathematik, Tome 349 (1984), p. 1.
Voir la notice de l'article dans European Digital Mathematics Library
Classification :
49Q05, 58E05, 58E12
Mots-clés : Palais-Smale condition, gradient-line deformations, general mountain-pass type existence result, unstable minimal surfaces, Morse inequalities
Mots-clés : Palais-Smale condition, gradient-line deformations, general mountain-pass type existence result, unstable minimal surfaces, Morse inequalities
@article{JRAM_1984__349_152619, author = {Michael Struwe}, title = {On a critical point theory for minimal surfaces spanning a wire in {Rn.}}, journal = {Journal f\"ur die reine und angewandte Mathematik}, pages = {1}, publisher = {mathdoc}, volume = {349}, year = {1984}, zbl = {0521.49028}, language = {un}, url = {https://geodesic-test.mathdoc.fr/item/JRAM_1984__349_152619/} }
TY - JOUR AU - Michael Struwe TI - On a critical point theory for minimal surfaces spanning a wire in Rn. JO - Journal für die reine und angewandte Mathematik PY - 1984 SP - 1 VL - 349 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/JRAM_1984__349_152619/ LA - un ID - JRAM_1984__349_152619 ER -
Michael Struwe. On a critical point theory for minimal surfaces spanning a wire in Rn.. Journal für die reine und angewandte Mathematik, Tome 349 (1984), p. 1. https://geodesic-test.mathdoc.fr/item/JRAM_1984__349_152619/