Rings whose overrings are integrally closed in their complete quotient ring.
Journal für die reine und angewandte Mathematik, Tome 282 (1976), p. 88.

Voir la notice de l'article dans European Digital Mathematics Library

@article{JRAM_1976__282_151703,
     author = {Norman Eggert},
     title = {Rings whose overrings are integrally closed in their complete quotient ring.},
     journal = {Journal f\"ur die reine und angewandte Mathematik},
     pages = {88},
     publisher = {mathdoc},
     volume = {282},
     year = {1976},
     zbl = {0318.13008},
     language = {un},
     url = {https://geodesic-test.mathdoc.fr/item/JRAM_1976__282_151703/}
}
TY  - JOUR
AU  - Norman Eggert
TI  - Rings whose overrings are integrally closed in their complete quotient ring.
JO  - Journal für die reine und angewandte Mathematik
PY  - 1976
SP  - 88
VL  - 282
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/JRAM_1976__282_151703/
LA  - un
ID  - JRAM_1976__282_151703
ER  - 
%0 Journal Article
%A Norman Eggert
%T Rings whose overrings are integrally closed in their complete quotient ring.
%J Journal für die reine und angewandte Mathematik
%D 1976
%P 88
%V 282
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/JRAM_1976__282_151703/
%G un
%F JRAM_1976__282_151703
Norman Eggert. Rings whose overrings are integrally closed in their complete quotient ring.. Journal für die reine und angewandte Mathematik, Tome 282 (1976), p. 88. https://geodesic-test.mathdoc.fr/item/JRAM_1976__282_151703/