Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JMAG_2019_15_a3, author = {Nevin G\"urb\"uz}, title = {Three anholonomy densities according to {Bishop} frame in {Euclidean} 3-space}, journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii}, pages = {510--525}, publisher = {mathdoc}, volume = {15}, year = {2019}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/JMAG_2019_15_a3/} }
TY - JOUR AU - Nevin Gürbüz TI - Three anholonomy densities according to Bishop frame in Euclidean 3-space JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2019 SP - 510 EP - 525 VL - 15 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/JMAG_2019_15_a3/ LA - en ID - JMAG_2019_15_a3 ER -
Nevin Gürbüz. Three anholonomy densities according to Bishop frame in Euclidean 3-space. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019), pp. 510-525. https://geodesic-test.mathdoc.fr/item/JMAG_2019_15_a3/
[1] Y. Aharonov, D. Bohm, “Significance of electromagnetic potentials in the quantum theory”, Phys. Rev., 115 (1959), 485–490 | DOI | MR
[2] Y. Aharonov, J. Anandan, “Phase change during a cylic quantum evolution”, Phys. Rev. Lett., 58 (1987), 1593–1596 | DOI | MR
[3] R. Balakrishnan, “Space curves, anholonomy and nonlinearity”, Pramana J. Phys., 64 (2005), 607–615 | DOI
[4] R. Balakrishnan, R. Bishop, R. Dandoloff, “Geometric phase in the classical continuous antiferromagnetic Heisenberg spin chain”, Phys Rev. Lett., 64 (1990), 2107–2110 | DOI | MR | Zbl
[5] A. Belavin, A. M. Polyakov, “Metastable states of two dimensional isotropic ferromagnets”, Pisma Zh. Eksp. Teor. Fiz., 22 (1975), 503–506
[6] M.V. Berry, “Quantal phase factors accompanying adiabatic changes”, Proceedings of the Royal Society of London Series A, Math. Phys. Sci., 392 (1984), 45–57 | MR | Zbl
[7] L.R. Bishop, “There is more than one way to frame a curve”, Amer. Math. Monthly, 82 (1975), 246–251 | DOI | MR | Zbl
[8] M.P. Do Carmo, Differential Geometry of Curves and Surfaces, Prentice Hall, Englewood Cliffs, NJ, 1976 | MR | Zbl
[9] P. Guha, “Moving space curve equations and a family of coupled KdV type systems”, Chaos, Solitons and Fractals, 15 (2003), 41–46 | DOI | MR | Zbl
[10] N. Gürbüz, “Moving non-null curves according to Bishop frame in Minkowski 3-space”, Int. J. Geom. Methods Mod. Phys., 12 (2015), 1550052 | DOI | MR | Zbl
[11] N. Gürbüz, “Anholonomy according to three formulations of non-null curve evolution”, Int. J. Geom. Methods Mod. Phys., 14 (2017), 1750175 | DOI | MR | Zbl
[12] N. Gürbüz, “Three class of non-lightlike curve evolution according to Darboux frame and geometric phase”, Int. J. Geom. Methods Mod. Phys., 15 (2018), 1850023 | DOI | MR | Zbl
[13] H. Hasimoto, “Motion of a vortex filament and its relation to elastica”, J. Phys. Soc. Jpn., 31 (1971), 293–294 | DOI
[14] H. Hasimoto, “Soliton on a vortex filament”, J. Fluid Mech., 51 (1972), 477–485 | DOI | MR | Zbl
[15] M. Lakshmanan, “Continuum spin system as an exactly solvable dynamical system”, Phys. Lett. A, 61 (1977), 53–54 | DOI
[16] M. Lakshmanan, “Continuum spin system as an exactly solvable dynamical system”, Phys. Lett. A, 61 (1977), 53–54 | DOI
[17] J. Langer, R. Perline, “The Hasimoto transformation and integrable flows on curves”, Appl. Math. Lett., 3 (1990), 61–64 | DOI | MR | Zbl
[18] A. Mostafazadeh, “Relativistic adiabatic approximation and geometric phase”, J. Phys. A: Math. Gen., 31 (1998), 7829–7845 | DOI | MR | Zbl
[19] G. Munijara, M. Lakshmanan, “Motion of space curves in three dimensional Minkowski space $R_{1}^{3}$ $SO(2,1)$ spin equation and defocusing nonlinear Schrödinger equation”, Int. J. Geom. Methods Mod. Phys., 7 (2010), 1043–1049 | DOI | MR
[20] S. Murugesh, R. Balakrishnan, “New connections between moving curves and soliton equations”, Phys. Lett. A, 290 (2001), 81–87 | DOI | MR | Zbl
[21] A. Tomita, R. Y. Chiao, “Observation of Berry's topological phase by use of an optical fiber”, Phys. Rev. Lett., 57 (1986), 937–940 | DOI