The discrete self-adjoint Dirac systems of general type: explicit solutions of direct and inverse problems, asymptotics of Verblunsky-type coefficients and the stability of solving of the inverse problem
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018), pp. 532-548.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider discrete self-adjoint Dirac systems determined by the potentials (sequences) {Ck} such that the matrices Ck are positive definite and j-unitary, where j is a diagonal m×m matrix which has m1 entries 1 and m2 entries 1 (m1+m2=m) on the main diagonal. We construct systems with the rational Weyl functions and explicitly solve the inverse problem to recover systems from the contractive rational Weyl functions. Moreover, we study the stability of this procedure. The matrices Ck (in the potentials) are the so-called Halmos extensions of the Verblunsky-type coefficients ρk. We show that in the case of the contractive rational Weyl functions the coefficients ρk tend to zero and the matrices Ck tend to the identity matrix Im.
@article{JMAG_2018_14_a5,
     author = {Inna Roitberg and Alexander Sakhnovich},
     title = {The discrete self-adjoint {Dirac} systems of general type: explicit solutions of direct and inverse problems, asymptotics of {Verblunsky-type} coefficients and the stability of solving of the inverse problem},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {532--548},
     publisher = {mathdoc},
     volume = {14},
     year = {2018},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/JMAG_2018_14_a5/}
}
TY  - JOUR
AU  - Inna Roitberg
AU  - Alexander Sakhnovich
TI  - The discrete self-adjoint Dirac systems of general type: explicit solutions of direct and inverse problems, asymptotics of Verblunsky-type coefficients and the stability of solving of the inverse problem
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2018
SP  - 532
EP  - 548
VL  - 14
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/JMAG_2018_14_a5/
LA  - en
ID  - JMAG_2018_14_a5
ER  - 
%0 Journal Article
%A Inna Roitberg
%A Alexander Sakhnovich
%T The discrete self-adjoint Dirac systems of general type: explicit solutions of direct and inverse problems, asymptotics of Verblunsky-type coefficients and the stability of solving of the inverse problem
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2018
%P 532-548
%V 14
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/JMAG_2018_14_a5/
%G en
%F JMAG_2018_14_a5
Inna Roitberg; Alexander Sakhnovich. The discrete self-adjoint Dirac systems of general type: explicit solutions of direct and inverse problems, asymptotics of Verblunsky-type coefficients and the stability of solving of the inverse problem. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018), pp. 532-548. https://geodesic-test.mathdoc.fr/item/JMAG_2018_14_a5/

[1] J.L. Cieslinski, “Algebraic construction of the Darboux matrix revisited”, J. Phys. A, 42 (2009), 404003 | DOI | MR | Zbl

[2] P.A. Deift, “Applications of a commutation formula”, Duke Math. J., 45 (1978), 267–310 | DOI | MR | Zbl

[3] V.K. Dubovoj, B. Fritzsche, B. Kirstein, Matricial Version of the Classical Schur Problem, Teubner-Texte zur Mathematik, 129, B.G. Teubner Verlagsgesellschaft mbH, Stuttgart, 1992 | MR | Zbl

[4] B. Fritzsche, B. Kirstein, I. Ya. Roitberg, A. L. Sakhnovich, “Weyl matrix functions and inverse problems for discrete Dirac type self-adjoint system: explicit and general solutions”, Oper. Matrices, 2 (2008), 201–231 | DOI | MR | Zbl

[5] B. Fritzsche, B. Kirstein, I. Ya. Roitberg, A. L. Sakhnovich, “Discrete Dirac system: rectangular Weyl, functions, direct and inverse problems”, Oper. Matrices, 8 (2014), 799–819 | DOI | MR | Zbl

[6] B. Fritzsche, B. Kirstein, I. Ya. Roitberg, A. L. Sakhnovich, “Stability of the procedure of explicit recovery of skew-selfadjoint Dirac systems from rational Weyl matrix functions”, Linear Algebra Appl., 533 (2017), 428–450 | DOI | MR | Zbl

[7] F. Gesztesy, G. Teschl, “On the double commutation method”, Proc. Amer. Math. Soc., 124 (1996), 1831–1840 | DOI | MR | Zbl

[8] C. Gu, H. Hu, Z. Zhou, Darboux Transformations in Integrable Systems, Springer, Dordrecht, 2005 | MR | Zbl

[9] M. A. Kaashoek, A. L. Sakhnovich, “Discrete pseudo-canonical system and isotropic Heisenberg magnet”, J. Funct. Anal., 228 (2005), 207–233 | DOI | MR | Zbl

[10] R. E. Kalman, P. Falb, M. Arbib, Topics in Mathematical System Theory, McGraw-Hill Book Company, New York, 1969 | MR | Zbl

[11] A. Kostenko, A. Sakhnovich, G. Teschl, “Commutation methods for Schrödinger operators with strongly singular potentials”, Math. Nachr., 285 (2012), 392–410 | DOI | MR | Zbl

[12] P. Lancaster, L. Rodman, Algebraic Riccati Equations, Clarendon Press, Oxford, 1995 | MR | Zbl

[13] V. A. Marchenko, “Stability of the inverse problem of scattering theory”, Mat. Sb. (N.S.), 77(119) (1968), 139–162 | MR | Zbl

[14] V. A. Marchenko, Nonlinear Equations and Operator Algebras, D. Reidel, Dordrecht, 1988 | MR | Zbl

[15] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin, 1991 | MR | Zbl

[16] A. C. M. Ran, L. Rodman, “Stability of invariant maximal semidefinite subspaces, II: Applications: selfadjoint rational matrix functions, algebraic Riccati equations”, Linear Algebra Appl., 63 (1984), 133–173 | DOI | MR | Zbl

[17] A. L. Sakhnovich, “Dressing procedure for solutions of nonlinear equations and the method of operator identities”, Inverse Problems, 10 (1994), 699–710 | DOI | MR | Zbl

[18] L. A. Sakhnovich, Spectral Theory of Canonical Differential Systems, Method of Operator Identities, Operator Theory Adv. Appl., 107, Birkhäuser, Basel, 1999 | MR | Zbl

[19] A. L. Sakhnovich, “Inverse problems for self-adjoint Dirac systems: explicit solutions and stability of the procedure”, Oper. Matrices, 10 (2016), 997–1008 | MR | Zbl

[20] A. L. Sakhnovich, “Verblunsky-type coefficients for Dirac and canonical systems generated by Toeplitz and Hankel matrices, respectively”, J. Approx. Theory, 237 (2019), 186–209 | DOI | MR | Zbl

[21] A. L. Sakhnovich, L. A. Sakhnovich, I. Ya. Roitberg, Inverse Problems and Nonlinear Evolution Equations. Solutions, Darboux Matrices and Weyl–Titchmarsh Functions, De Gruyter Studies in Mathematics, 47, De Gruyter, Berlin, 2013 | MR | Zbl

[22] L. A. Sakhnovich, “On the factorization of the transfer matrix function”, Sov. Math. Dokl., 17 (1976), 203–207 | Zbl