Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JMAG_2018_14_a5, author = {Inna Roitberg and Alexander Sakhnovich}, title = {The discrete self-adjoint {Dirac} systems of general type: explicit solutions of direct and inverse problems, asymptotics of {Verblunsky-type} coefficients and the stability of solving of the inverse problem}, journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii}, pages = {532--548}, publisher = {mathdoc}, volume = {14}, year = {2018}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/JMAG_2018_14_a5/} }
TY - JOUR AU - Inna Roitberg AU - Alexander Sakhnovich TI - The discrete self-adjoint Dirac systems of general type: explicit solutions of direct and inverse problems, asymptotics of Verblunsky-type coefficients and the stability of solving of the inverse problem JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2018 SP - 532 EP - 548 VL - 14 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/JMAG_2018_14_a5/ LA - en ID - JMAG_2018_14_a5 ER -
%0 Journal Article %A Inna Roitberg %A Alexander Sakhnovich %T The discrete self-adjoint Dirac systems of general type: explicit solutions of direct and inverse problems, asymptotics of Verblunsky-type coefficients and the stability of solving of the inverse problem %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2018 %P 532-548 %V 14 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/JMAG_2018_14_a5/ %G en %F JMAG_2018_14_a5
Inna Roitberg; Alexander Sakhnovich. The discrete self-adjoint Dirac systems of general type: explicit solutions of direct and inverse problems, asymptotics of Verblunsky-type coefficients and the stability of solving of the inverse problem. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018), pp. 532-548. https://geodesic-test.mathdoc.fr/item/JMAG_2018_14_a5/
[1] J.L. Cieslinski, “Algebraic construction of the Darboux matrix revisited”, J. Phys. A, 42 (2009), 404003 | DOI | MR | Zbl
[2] P.A. Deift, “Applications of a commutation formula”, Duke Math. J., 45 (1978), 267–310 | DOI | MR | Zbl
[3] V.K. Dubovoj, B. Fritzsche, B. Kirstein, Matricial Version of the Classical Schur Problem, Teubner-Texte zur Mathematik, 129, B.G. Teubner Verlagsgesellschaft mbH, Stuttgart, 1992 | MR | Zbl
[4] B. Fritzsche, B. Kirstein, I. Ya. Roitberg, A. L. Sakhnovich, “Weyl matrix functions and inverse problems for discrete Dirac type self-adjoint system: explicit and general solutions”, Oper. Matrices, 2 (2008), 201–231 | DOI | MR | Zbl
[5] B. Fritzsche, B. Kirstein, I. Ya. Roitberg, A. L. Sakhnovich, “Discrete Dirac system: rectangular Weyl, functions, direct and inverse problems”, Oper. Matrices, 8 (2014), 799–819 | DOI | MR | Zbl
[6] B. Fritzsche, B. Kirstein, I. Ya. Roitberg, A. L. Sakhnovich, “Stability of the procedure of explicit recovery of skew-selfadjoint Dirac systems from rational Weyl matrix functions”, Linear Algebra Appl., 533 (2017), 428–450 | DOI | MR | Zbl
[7] F. Gesztesy, G. Teschl, “On the double commutation method”, Proc. Amer. Math. Soc., 124 (1996), 1831–1840 | DOI | MR | Zbl
[8] C. Gu, H. Hu, Z. Zhou, Darboux Transformations in Integrable Systems, Springer, Dordrecht, 2005 | MR | Zbl
[9] M. A. Kaashoek, A. L. Sakhnovich, “Discrete pseudo-canonical system and isotropic Heisenberg magnet”, J. Funct. Anal., 228 (2005), 207–233 | DOI | MR | Zbl
[10] R. E. Kalman, P. Falb, M. Arbib, Topics in Mathematical System Theory, McGraw-Hill Book Company, New York, 1969 | MR | Zbl
[11] A. Kostenko, A. Sakhnovich, G. Teschl, “Commutation methods for Schrödinger operators with strongly singular potentials”, Math. Nachr., 285 (2012), 392–410 | DOI | MR | Zbl
[12] P. Lancaster, L. Rodman, Algebraic Riccati Equations, Clarendon Press, Oxford, 1995 | MR | Zbl
[13] V. A. Marchenko, “Stability of the inverse problem of scattering theory”, Mat. Sb. (N.S.), 77(119) (1968), 139–162 | MR | Zbl
[14] V. A. Marchenko, Nonlinear Equations and Operator Algebras, D. Reidel, Dordrecht, 1988 | MR | Zbl
[15] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin, 1991 | MR | Zbl
[16] A. C. M. Ran, L. Rodman, “Stability of invariant maximal semidefinite subspaces, II: Applications: selfadjoint rational matrix functions, algebraic Riccati equations”, Linear Algebra Appl., 63 (1984), 133–173 | DOI | MR | Zbl
[17] A. L. Sakhnovich, “Dressing procedure for solutions of nonlinear equations and the method of operator identities”, Inverse Problems, 10 (1994), 699–710 | DOI | MR | Zbl
[18] L. A. Sakhnovich, Spectral Theory of Canonical Differential Systems, Method of Operator Identities, Operator Theory Adv. Appl., 107, Birkhäuser, Basel, 1999 | MR | Zbl
[19] A. L. Sakhnovich, “Inverse problems for self-adjoint Dirac systems: explicit solutions and stability of the procedure”, Oper. Matrices, 10 (2016), 997–1008 | MR | Zbl
[20] A. L. Sakhnovich, “Verblunsky-type coefficients for Dirac and canonical systems generated by Toeplitz and Hankel matrices, respectively”, J. Approx. Theory, 237 (2019), 186–209 | DOI | MR | Zbl
[21] A. L. Sakhnovich, L. A. Sakhnovich, I. Ya. Roitberg, Inverse Problems and Nonlinear Evolution Equations. Solutions, Darboux Matrices and Weyl–Titchmarsh Functions, De Gruyter Studies in Mathematics, 47, De Gruyter, Berlin, 2013 | MR | Zbl
[22] L. A. Sakhnovich, “On the factorization of the transfer matrix function”, Sov. Math. Dokl., 17 (1976), 203–207 | Zbl