Asymptotic properties of integrals of quotients when the numerator oscillates and the denominator degenerates
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018).

Voir la notice de l'article provenant de la source Math-Net.Ru

We study asymptotic expansion as ν0 for integrals over R2d={(x,y)} of quotients of the form F(x,y)cos(λxy)/((xy)2+ν2), where λ0 and F decays at infinity sufficiently fast. Integrals of this kind appear in the theory of wave turbulence.
@article{JMAG_2018_14_a3,
     author = {Sergei Kuksin},
     title = {Asymptotic properties of integrals of quotients when the numerator oscillates and the denominator degenerates},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     publisher = {mathdoc},
     volume = {14},
     year = {2018},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/JMAG_2018_14_a3/}
}
TY  - JOUR
AU  - Sergei Kuksin
TI  - Asymptotic properties of integrals of quotients when the numerator oscillates and the denominator degenerates
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2018
VL  - 14
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/JMAG_2018_14_a3/
LA  - en
ID  - JMAG_2018_14_a3
ER  - 
%0 Journal Article
%A Sergei Kuksin
%T Asymptotic properties of integrals of quotients when the numerator oscillates and the denominator degenerates
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2018
%V 14
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/JMAG_2018_14_a3/
%G en
%F JMAG_2018_14_a3
Sergei Kuksin. Asymptotic properties of integrals of quotients when the numerator oscillates and the denominator degenerates. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018). https://geodesic-test.mathdoc.fr/item/JMAG_2018_14_a3/

[1] Math. Notes, 103 (2018), 713–723 | DOI | DOI | MR | Zbl

[2] S. Kuksin, “Asymptotic expansions for some integrals of quotients with degenerated divisors”, Russ. J. Math. Phys., 24 (2017), 476–487 | DOI | MR | Zbl

[3] S. Nazarenko, Wave Turbulence, Lecture Notes in Physics, 825, Springer, Heidelberg, 2011 | DOI | MR | Zbl