Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JMAG_2018_14_a2, author = {Thomas Kappeler and Yannick Widmer}, title = {On spectral properties of the $L$ operator in the {Lax} pair of the {sine-Gordon} equation}, journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii}, pages = {452--509}, publisher = {mathdoc}, volume = {14}, year = {2018}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/JMAG_2018_14_a2/} }
TY - JOUR AU - Thomas Kappeler AU - Yannick Widmer TI - On spectral properties of the $L$ operator in the Lax pair of the sine-Gordon equation JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2018 SP - 452 EP - 509 VL - 14 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/JMAG_2018_14_a2/ LA - en ID - JMAG_2018_14_a2 ER -
%0 Journal Article %A Thomas Kappeler %A Yannick Widmer %T On spectral properties of the $L$ operator in the Lax pair of the sine-Gordon equation %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2018 %P 452-509 %V 14 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/JMAG_2018_14_a2/ %G en %F JMAG_2018_14_a2
Thomas Kappeler; Yannick Widmer. On spectral properties of the $L$ operator in the Lax pair of the sine-Gordon equation. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 14 (2018), pp. 452-509. https://geodesic-test.mathdoc.fr/item/JMAG_2018_14_a2/
[1] P. Djakov, B. Mityagin, “Instability zones of periodic 1-dimensional Schrödinger and Dirac operators”, Russian Math. Surveys, 61:4 (2006), 663–766 | DOI | MR | Zbl
[2] V. E. Zaharov, L. A. Tahtadžjan, L. D. Faddeev, “A complete description of the solutions of the “sine-Gordon” equation”, Dokl. Akad. Nauk SSSR, 219 (1974), 1334–1337 (Russian) | MR
[3] B. Grébert, T. Kappeler, The Defocusing NLS Equation and Its Normal Form, Lectures in Mathematics, European Mathematical Society, Zürich, 2014 | MR
[4] T. Kappeler, B. Mityagin, “Estimates for periodic and Dirichlet eigenvalues of the Schrödinger operator”, SIAM J. Math. Anal., 33:1 (2001), 113–152 | DOI | MR | Zbl
[5] T. Kappeler, J. Pöschel, KdV KAM, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer Verlag, New York, 2003 | Zbl
[6] T. Kappeler, F. Serier, P. Topalov, “On the characterization of the smoothness of skew-adjoint potentials in periodic Dirac operators”, J. Funct. Anal., 256:7 (2009), 2069–2112 | DOI | MR | Zbl
[7] V. Marchenko, Sturm-Liouville Operators and Applications, Operator Theory: Advances and Applications, 22, Birkhäuser, Basel, 1986 | DOI | MR | Zbl
[8] H. McKean, “The sine-Gordon and sinh-Gordon equations on the circle”, Comm. Pure Appl. Math., 34:2 (1981), 197–257 | DOI | MR | Zbl
[9] J. Pöschel, “Hill's potentials in weighted Sobolev spaces and their spectral gaps”, Math. Ann., 349:2 (2011), 433–458 | DOI | MR