About integral of Weber--Shafheitlin
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003), pp. 481-489.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let Lλp be the function space at half-line with the norm fp,λp=0|f(x)|pxλdx. In the work the operators Aμ of multiplicative convolution with Bessel function Aμf(x)=0Jμ(xt)f(t)tλdt are considered and their following propeties are proved. The operators Aμ, μ0, are bounded on L2(λ), 1λ1. Aμ, μ>0, are bounded on Lλp, 1p, but A0 is unbounded on L1p, 1p. The operators Aμ are unbounded on Lλp p2, 1λ1. With some relations between values (μ,ν,λ,p) the products AνAμ are bounded on Lλp.
@article{JMAG_2003_10_a2,
     author = {I. S. Belov},
     title = {About integral of {Weber--Shafheitlin}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {481--489},
     publisher = {mathdoc},
     volume = {10},
     year = {2003},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/JMAG_2003_10_a2/}
}
TY  - JOUR
AU  - I. S. Belov
TI  - About integral of Weber--Shafheitlin
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2003
SP  - 481
EP  - 489
VL  - 10
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/JMAG_2003_10_a2/
LA  - ru
ID  - JMAG_2003_10_a2
ER  - 
%0 Journal Article
%A I. S. Belov
%T About integral of Weber--Shafheitlin
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2003
%P 481-489
%V 10
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/JMAG_2003_10_a2/
%G ru
%F JMAG_2003_10_a2
I. S. Belov. About integral of Weber--Shafheitlin. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003), pp. 481-489. https://geodesic-test.mathdoc.fr/item/JMAG_2003_10_a2/