Guantum matrix ball: the Cauchy--Szeg\"o kernel and the Shilov boundary
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2001), pp. 366-384.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work produces a q-analogue of the Cauchy–Szegö integral representation that retrieves a holomorphic function in the matrix ball from its values on the Shilov boundary. Besides that, the Shilov boundary of the quantum matrix ball is described and the Uqsum,n-covariance of the Uqs(um×un)-invariant integral on this boundary is established. The latter result allows one to obtain a q-analogue for the principal degenerate series of unitary representations related to the Shilov boundary of the matrix ball.
@article{JMAG_2001_8_a1,
     author = {L. Vaksman},
     title = {Guantum matrix ball: the {Cauchy--Szeg\"o} kernel and the {Shilov} boundary},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {366--384},
     publisher = {mathdoc},
     volume = {8},
     year = {2001},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/JMAG_2001_8_a1/}
}
TY  - JOUR
AU  - L. Vaksman
TI  - Guantum matrix ball: the Cauchy--Szeg\"o kernel and the Shilov boundary
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2001
SP  - 366
EP  - 384
VL  - 8
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/JMAG_2001_8_a1/
LA  - en
ID  - JMAG_2001_8_a1
ER  - 
%0 Journal Article
%A L. Vaksman
%T Guantum matrix ball: the Cauchy--Szeg\"o kernel and the Shilov boundary
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2001
%P 366-384
%V 8
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/JMAG_2001_8_a1/
%G en
%F JMAG_2001_8_a1
L. Vaksman. Guantum matrix ball: the Cauchy--Szeg\"o kernel and the Shilov boundary. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2001), pp. 366-384. https://geodesic-test.mathdoc.fr/item/JMAG_2001_8_a1/