A relation between restricted and unrestricted weighted Motzkin paths
Journal of integer sequences, Tome 9 (2006) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider those lattice paths that use the steps "up", "level", and "down" with assigned weights w,b,c. In probability theory, the total weight is 1. In combinatorics, we replace weight by the number of colors. Here we give a combinatorial proof of a relation between restricted and unrestricted weighted Motzkin paths.
Classification : 05A15, 05A19
Mots-clés : Motzkin paths, combinatorial identity
@article{JIS_2006__9_1_a0,
     author = {Woan, Wen-jin},
     title = {A relation between restricted and unrestricted weighted {Motzkin} paths},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2006},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/JIS_2006__9_1_a0/}
}
TY  - JOUR
AU  - Woan, Wen-jin
TI  - A relation between restricted and unrestricted weighted Motzkin paths
JO  - Journal of integer sequences
PY  - 2006
VL  - 9
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/JIS_2006__9_1_a0/
LA  - en
ID  - JIS_2006__9_1_a0
ER  - 
%0 Journal Article
%A Woan, Wen-jin
%T A relation between restricted and unrestricted weighted Motzkin paths
%J Journal of integer sequences
%D 2006
%V 9
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/JIS_2006__9_1_a0/
%G en
%F JIS_2006__9_1_a0
Woan, Wen-jin. A relation between restricted and unrestricted weighted Motzkin paths. Journal of integer sequences, Tome 9 (2006) no. 1. https://geodesic-test.mathdoc.fr/item/JIS_2006__9_1_a0/