Perfect powers with all equal digits but one
Journal of integer sequences, Tome 8 (2005) no. 5.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper, among other results, we show that for any fixed integer $l >= 3$, there are only finitely many perfect $l$-th powers all of whose digits are equal but one, except for the trivial families $10^{\ln }$ when $l >= 3$ and 8 . $10^{3n}$ if $l = 3$.
Classification : 11D75, 11J75
Mots-clés : perfect powers, digits
@article{JIS_2005__8_5_a3,
     author = {Kihel, Omar and Luca, Florian},
     title = {Perfect powers with all equal digits but one},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {8},
     number = {5},
     year = {2005},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/JIS_2005__8_5_a3/}
}
TY  - JOUR
AU  - Kihel, Omar
AU  - Luca, Florian
TI  - Perfect powers with all equal digits but one
JO  - Journal of integer sequences
PY  - 2005
VL  - 8
IS  - 5
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/JIS_2005__8_5_a3/
LA  - en
ID  - JIS_2005__8_5_a3
ER  - 
%0 Journal Article
%A Kihel, Omar
%A Luca, Florian
%T Perfect powers with all equal digits but one
%J Journal of integer sequences
%D 2005
%V 8
%N 5
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/JIS_2005__8_5_a3/
%G en
%F JIS_2005__8_5_a3
Kihel, Omar; Luca, Florian. Perfect powers with all equal digits but one. Journal of integer sequences, Tome 8 (2005) no. 5. https://geodesic-test.mathdoc.fr/item/JIS_2005__8_5_a3/