On the number of representations of an integer by a linear form
Journal of integer sequences, Tome 8 (2005) no. 5.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let a1,,ak be positive integers generating the unit ideal, and j be a residue class modulo L=lcm(a1,,ak). It is known that the function r(N) that counts solutions to the equation x1a1++xkak=N in non-negative integers xi is a polynomial when restricted to non-negative integers Nj(modL). Here we give, in the case of k=3, exact formulas for these polynomials up to the constant terms, and exact formulas including the constants for q=gcd(a1,a2)gcd(a1,a3)gcd(a2,a3) of the L residue classes. The case q=L plays a special role, and it is studied in more detail.
Classification : 05A15, 52C07
Mots-clés : Frobenius problem, quasi-polynomial, representation numbers, pick's theorem
@article{JIS_2005__8_5_a2,
     author = {Alon, Gil and Clark, Pete L.},
     title = {On the number of representations of an integer by a linear form},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {8},
     number = {5},
     year = {2005},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/JIS_2005__8_5_a2/}
}
TY  - JOUR
AU  - Alon, Gil
AU  - Clark, Pete L.
TI  - On the number of representations of an integer by a linear form
JO  - Journal of integer sequences
PY  - 2005
VL  - 8
IS  - 5
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/JIS_2005__8_5_a2/
LA  - en
ID  - JIS_2005__8_5_a2
ER  - 
%0 Journal Article
%A Alon, Gil
%A Clark, Pete L.
%T On the number of representations of an integer by a linear form
%J Journal of integer sequences
%D 2005
%V 8
%N 5
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/JIS_2005__8_5_a2/
%G en
%F JIS_2005__8_5_a2
Alon, Gil; Clark, Pete L. On the number of representations of an integer by a linear form. Journal of integer sequences, Tome 8 (2005) no. 5. https://geodesic-test.mathdoc.fr/item/JIS_2005__8_5_a2/