On a restricted m-non-squashing partition function
Journal of integer sequences, Tome 8 (2005) no. 5.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: For a fixed integer m2, we say that a partition n=p1+p2++pk of a natural number n is m-non-squashing if p11 and (m1)(p1++pj1)pj for 2jk. In this paper we give a new bijective proof that the number of m-non-squashing partitions of n is equal to the number of m-ary partitions of n. Moreover, we prove a similar result for a certain restricted m-non-squashing partition function c(n) which is a natural generalization of the function which enumerates non-squashing partitions into distinct parts (originally introduced by Sloane and the second author). Finally, we prove that for each integer r2,$$ c(m^{r+1}n)-c(m^r n)\equiv0\pmod{m^{r-1}/d^{r-2}},$$ where d=gcd(2,m).
Classification : 11P83, 05A17, 11P81
Mots-clés : partitions, m-non-squashing partitions, m-ary partitions, stacking boxes, congruences (Concerned with sequences and
@article{JIS_2005__8_5_a0,
     author = {R{\o}dseth, {\O}ystein and Sellers, James A.},
     title = {On a restricted $m$-non-squashing partition function},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {8},
     number = {5},
     year = {2005},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/JIS_2005__8_5_a0/}
}
TY  - JOUR
AU  - Rødseth, Øystein
AU  - Sellers, James A.
TI  - On a restricted $m$-non-squashing partition function
JO  - Journal of integer sequences
PY  - 2005
VL  - 8
IS  - 5
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/JIS_2005__8_5_a0/
LA  - en
ID  - JIS_2005__8_5_a0
ER  - 
%0 Journal Article
%A Rødseth, Øystein
%A Sellers, James A.
%T On a restricted $m$-non-squashing partition function
%J Journal of integer sequences
%D 2005
%V 8
%N 5
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/JIS_2005__8_5_a0/
%G en
%F JIS_2005__8_5_a0
Rødseth, Øystein; Sellers, James A. On a restricted $m$-non-squashing partition function. Journal of integer sequences, Tome 8 (2005) no. 5. https://geodesic-test.mathdoc.fr/item/JIS_2005__8_5_a0/