Generalized number derivatives
Journal of integer sequences, Tome 8 (2005) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We generalize the concept of a number derivative, and examine one particular instance of a deformed number derivative for finite field elements. We find that the derivative is linear when the deformation is a Frobenius map and go on to examine some of its basic properties. Full version: pdf, dvi, ps, latex
Classification : 05A30, 11T99
Mots-clés : q-calculus, number derivative, arithmetic derivative
@article{JIS_2005__8_1_a3,
     author = {Stay, Michael},
     title = {Generalized number derivatives},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2005},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/JIS_2005__8_1_a3/}
}
TY  - JOUR
AU  - Stay, Michael
TI  - Generalized number derivatives
JO  - Journal of integer sequences
PY  - 2005
VL  - 8
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/JIS_2005__8_1_a3/
LA  - en
ID  - JIS_2005__8_1_a3
ER  - 
%0 Journal Article
%A Stay, Michael
%T Generalized number derivatives
%J Journal of integer sequences
%D 2005
%V 8
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/JIS_2005__8_1_a3/
%G en
%F JIS_2005__8_1_a3
Stay, Michael. Generalized number derivatives. Journal of integer sequences, Tome 8 (2005) no. 1. https://geodesic-test.mathdoc.fr/item/JIS_2005__8_1_a3/