Concatenations with binary recurrent sequences
Journal of integer sequences, Tome 8 (2005) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Given positive integers A1,,At and b2, we write A1At(b) for the integer whose base-b representation is the concatenation of the base-b representations of A1,,At. In this paper, we prove that if (un)n0 is a binary recurrent sequence of integers satisfying some mild hypotheses, then for every fixed integer t1, there are at most finitely many nonnegative integers n1,,nt such that |un1||unt|(b) is a member of the sequence (|un|)n0. In particular, we compute all such instances in the special case that b=10,t=2, and un=Fn is the sequence of Fibonacci numbers.
Classification : 11B37, 11B39, 11J86
Mots-clés : binary recurrent sequences, Fibonacci numbers, digits
@article{JIS_2005__8_1_a2,
     author = {Banks, William D. and Luca, Florian},
     title = {Concatenations with binary recurrent sequences},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2005},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/JIS_2005__8_1_a2/}
}
TY  - JOUR
AU  - Banks, William D.
AU  - Luca, Florian
TI  - Concatenations with binary recurrent sequences
JO  - Journal of integer sequences
PY  - 2005
VL  - 8
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/JIS_2005__8_1_a2/
LA  - en
ID  - JIS_2005__8_1_a2
ER  - 
%0 Journal Article
%A Banks, William D.
%A Luca, Florian
%T Concatenations with binary recurrent sequences
%J Journal of integer sequences
%D 2005
%V 8
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/JIS_2005__8_1_a2/
%G en
%F JIS_2005__8_1_a2
Banks, William D.; Luca, Florian. Concatenations with binary recurrent sequences. Journal of integer sequences, Tome 8 (2005) no. 1. https://geodesic-test.mathdoc.fr/item/JIS_2005__8_1_a2/