Every Frame is a Sum of Three (But Not Two) Orthonormal Bases-and Other Frame Representations.
The journal of Fourier analysis and applications [[Elektronische Ressource]], Tome 4 (1998) no. 2, p. 727.
Voir la notice de l'article dans European Digital Mathematics Library
Classification :
46B15, 47A05, 47B65, 46C05
Mots-clés : frame for a Hilbert space, orthonormal bases, Riesz basis, tight frames
Mots-clés : frame for a Hilbert space, orthonormal bases, Riesz basis, tight frames
@article{JFAA_1998__4_2_59591, author = {Peter G. Casazza}, title = {Every {Frame} is a {Sum} of {Three} {(But} {Not} {Two)} {Orthonormal} {Bases-and} {Other} {Frame} {Representations.}}, journal = {The journal of Fourier analysis and applications [[Elektronische Ressource]]}, pages = {727}, publisher = {mathdoc}, volume = {4}, number = {2}, year = {1998}, zbl = {0935.46022}, language = {un}, url = {https://geodesic-test.mathdoc.fr/item/JFAA_1998__4_2_59591/} }
TY - JOUR AU - Peter G. Casazza TI - Every Frame is a Sum of Three (But Not Two) Orthonormal Bases-and Other Frame Representations. JO - The journal of Fourier analysis and applications [[Elektronische Ressource]] PY - 1998 SP - 727 VL - 4 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/JFAA_1998__4_2_59591/ LA - un ID - JFAA_1998__4_2_59591 ER -
%0 Journal Article %A Peter G. Casazza %T Every Frame is a Sum of Three (But Not Two) Orthonormal Bases-and Other Frame Representations. %J The journal of Fourier analysis and applications [[Elektronische Ressource]] %D 1998 %P 727 %V 4 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/JFAA_1998__4_2_59591/ %G un %F JFAA_1998__4_2_59591
Peter G. Casazza. Every Frame is a Sum of Three (But Not Two) Orthonormal Bases-and Other Frame Representations.. The journal of Fourier analysis and applications [[Elektronische Ressource]], Tome 4 (1998) no. 2, p. 727. https://geodesic-test.mathdoc.fr/item/JFAA_1998__4_2_59591/