Mathematical modeling of group concurrency in game theory
Journal of computational and engineering mathematics, Tome 2 (2015) no. 2, pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

The approach to an estimation of results of group «competitions» of intellectual agents is described. Petri–Markov models group «competition» are analyzed. Expressions for the determination of the probability density distribution and the participants or groups of participants win or lose «competition» are given. In general, the temporal and probabilistic characteristics of the game are obtained. The technique for an estimation of sequence of victories in «competition» of groups of subjects is offered, the estimation of efficiency of «competitions» of groups is resulted. Are considered two most often used principle of distribution of penalties: the lost group pays the penalty to the won group; each participant of the lost group pays the penalty to the won group, and sizes of penalties are distributed on time.
Mots-clés : competition, group concurrent games, Petri–Markov nets, effectiveness, the penalty of a participant.
@article{JCEM_2015_2_2_a0,
     author = {A. N. Ivutin and E. V. Larkin and A. S. Novikov},
     title = {Mathematical modeling of group concurrency in game theory},
     journal = {Journal of computational and engineering mathematics},
     pages = {3--12},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2015},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/JCEM_2015_2_2_a0/}
}
TY  - JOUR
AU  - A. N. Ivutin
AU  - E. V. Larkin
AU  - A. S. Novikov
TI  - Mathematical modeling of group concurrency in game theory
JO  - Journal of computational and engineering mathematics
PY  - 2015
SP  - 3
EP  - 12
VL  - 2
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/JCEM_2015_2_2_a0/
LA  - en
ID  - JCEM_2015_2_2_a0
ER  - 
%0 Journal Article
%A A. N. Ivutin
%A E. V. Larkin
%A A. S. Novikov
%T Mathematical modeling of group concurrency in game theory
%J Journal of computational and engineering mathematics
%D 2015
%P 3-12
%V 2
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/JCEM_2015_2_2_a0/
%G en
%F JCEM_2015_2_2_a0
A. N. Ivutin; E. V. Larkin; A. S. Novikov. Mathematical modeling of group concurrency in game theory. Journal of computational and engineering mathematics, Tome 2 (2015) no. 2, pp. 3-12. https://geodesic-test.mathdoc.fr/item/JCEM_2015_2_2_a0/

[1] J. Von Neumann, O. Morgenstern, Theory of Games and Economic Behavior, Princeton University Press, Princeton, 2007, 776 pp. | MR | Zbl

[2] A. N. Ivutin, E. V. Larkin, “Simulation of Concurrent Games”, Mathematical Modelling, Programming and Computer Software, 8:2 (2015), 43–54 | Zbl

[3] A. N. Ivutin, E. V. Larkin, Y. I. Lutskov, A. S. Novikov, “Simulation of Concurrent Process with Petri - Markov Nets”, Life Science Journal, 11 (2014), 506–511

[4] C. A. Petri, “Nets, Time and Space”, Theoretical Computer Science, 153:1-2 (1996), 3–48 | DOI | MR | Zbl

[5] K. Jensen, Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use: Volume 1, Springer-Verlag, London, 1996

[6] S. Ramaswamy, K. P. Valavanis, “Hierarchical Time-Extended Petri Nets (H-EPN) Based Error Identification and Recovery for Hierarchical System”, IEEE Trans. on Systems, Man, and Cybernetics - Part B: Cybernetics., 26:1 (1996), 164–175 | DOI