Positive Sets and Monotone Sets
Journal of convex analysis, Tome 14 (2007) no. 2, pp. 297-317.

Voir la notice de l'article provenant de la source Heldermann Verlag

We show how convex analysis can be applied to the theory of sets that are "positive" with respect to a continuous quadratic form on a Banach space. Monotone sets can be considered as a special case of positive sets, and we show how our results lead to very efficient proofs of a number of results on monotone sets. One of the key techniques that we use is a generalization of the Fitzpatrick function from monotone set theory to an analogous function for positive sets.
@article{JCA_2007_14_2_JCA_2007_14_2_a5,
     author = {S. Simons},
     title = {Positive {Sets} and {Monotone} {Sets}},
     journal = {Journal of convex analysis},
     pages = {297--317},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2007},
     url = {https://geodesic-test.mathdoc.fr/item/JCA_2007_14_2_JCA_2007_14_2_a5/}
}
TY  - JOUR
AU  - S. Simons
TI  - Positive Sets and Monotone Sets
JO  - Journal of convex analysis
PY  - 2007
SP  - 297
EP  - 317
VL  - 14
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/JCA_2007_14_2_JCA_2007_14_2_a5/
ID  - JCA_2007_14_2_JCA_2007_14_2_a5
ER  - 
%0 Journal Article
%A S. Simons
%T Positive Sets and Monotone Sets
%J Journal of convex analysis
%D 2007
%P 297-317
%V 14
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/JCA_2007_14_2_JCA_2007_14_2_a5/
%F JCA_2007_14_2_JCA_2007_14_2_a5
S. Simons. Positive Sets and Monotone Sets. Journal of convex analysis, Tome 14 (2007) no. 2, pp. 297-317. https://geodesic-test.mathdoc.fr/item/JCA_2007_14_2_JCA_2007_14_2_a5/