Summary: For every composition of a positive integer , we construct a finite chain complex whose terms are direct sums of permutation modules for the symmetric group mathfrakS_r with Young subgroup stabilizers mathfrakS_mu. The construction is combinatorial and can be carried out over every commutative base ring . We conjecture that for every partition the chain complex has homology concentrated in one degree (at the end of the complex) and that it is isomorphic to the dual of the Specht module . We prove the exactness in special cases.
@article{JAC_2011__34_1_a0,
author = {Boltje, Robert and Hartmann, Robert},
title = {Permutation resolutions for {Specht} modules.},
journal = {Journal of Algebraic Combinatorics},
pages = {141--162},
publisher = {mathdoc},
volume = {34},
number = {1},
year = {2011},
language = {en},
url = {https://geodesic-test.mathdoc.fr/item/JAC_2011__34_1_a0/}
}
TY - JOUR
AU - Boltje, Robert
AU - Hartmann, Robert
TI - Permutation resolutions for Specht modules.
JO - Journal of Algebraic Combinatorics
PY - 2011
SP - 141
EP - 162
VL - 34
IS - 1
PB - mathdoc
UR - https://geodesic-test.mathdoc.fr/item/JAC_2011__34_1_a0/
LA - en
ID - JAC_2011__34_1_a0
ER -
%0 Journal Article
%A Boltje, Robert
%A Hartmann, Robert
%T Permutation resolutions for Specht modules.
%J Journal of Algebraic Combinatorics
%D 2011
%P 141-162
%V 34
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/JAC_2011__34_1_a0/
%G en
%F JAC_2011__34_1_a0
Boltje, Robert; Hartmann, Robert. Permutation resolutions for Specht modules.. Journal of Algebraic Combinatorics, Tome 34 (2011) no. 1, pp. 141-162. https://geodesic-test.mathdoc.fr/item/JAC_2011__34_1_a0/