Permutation resolutions for Specht modules.
Journal of Algebraic Combinatorics, Tome 34 (2011) no. 1, pp. 141-162.
Voir la notice de l'article dans Electronic Library of Mathematics
Summary: For every composition $\lambda $ of a positive integer $r$, we construct a finite chain complex whose terms are direct sums of permutation modules $M ^{ \mu }$ for the symmetric group $\mathfrak S _{ r}$ mathfrakS_r with Young subgroup stabilizers $\mathfrak S _{ m}$ mathfrakS_mu. The construction is combinatorial and can be carried out over every commutative base ring $k$. We conjecture that for every partition $\lambda $ the chain complex has homology concentrated in one degree (at the end of the complex) and that it is isomorphic to the dual of the Specht module $S ^{ \lambda }$. We prove the exactness in special cases.
Classification :
!!par!!, link, to, page, 11, link, to, page, 12, link, to, page, 12, link, to, page, 8, link, to, page, 18, link, to, page, 11, link, to, page, 12, J, Algebr, Comb, (2011), 34:, 141-162
Mots-clés : keywords symmetric group, permutation module, Specht module, resolution
Mots-clés : keywords symmetric group, permutation module, Specht module, resolution
@article{JAC_2011__34_1_a0, author = {Boltje, Robert and Hartmann, Robert}, title = {Permutation resolutions for {Specht} modules.}, journal = {Journal of Algebraic Combinatorics}, pages = {141--162}, publisher = {mathdoc}, volume = {34}, number = {1}, year = {2011}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/JAC_2011__34_1_a0/} }
Boltje, Robert; Hartmann, Robert. Permutation resolutions for Specht modules.. Journal of Algebraic Combinatorics, Tome 34 (2011) no. 1, pp. 141-162. https://geodesic-test.mathdoc.fr/item/JAC_2011__34_1_a0/