Finite groups with planar subgroup lattices.
Journal of Algebraic Combinatorics, Tome 23 (2006) no. 3, pp. 207-223.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: It is natural to ask when a group has a planar Hasse lattice or more generally when its subgroup graph is planar. In this paper, we completely answer this question for finite groups. We analyze abelian groups, p-groups, solvable groups, and nonsolvable groups in turn. We find seven infinite families (four depending on two parameters, one on three, two on four), and three "sporadic" groups. In particular, we show that no nonabelian group whose order has three distinct prime factors can be planar.
Mots-clés : keywords graph, subgroup graph, planar, lattice-planar, nonabelian group
@article{JAC_2006__23_3_a4,
     author = {Bohanon, Joseph P. and Reid, Les},
     title = {Finite groups with planar subgroup lattices.},
     journal = {Journal of Algebraic Combinatorics},
     pages = {207--223},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2006},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/JAC_2006__23_3_a4/}
}
TY  - JOUR
AU  - Bohanon, Joseph P.
AU  - Reid, Les
TI  - Finite groups with planar subgroup lattices.
JO  - Journal of Algebraic Combinatorics
PY  - 2006
SP  - 207
EP  - 223
VL  - 23
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/JAC_2006__23_3_a4/
LA  - en
ID  - JAC_2006__23_3_a4
ER  - 
%0 Journal Article
%A Bohanon, Joseph P.
%A Reid, Les
%T Finite groups with planar subgroup lattices.
%J Journal of Algebraic Combinatorics
%D 2006
%P 207-223
%V 23
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/JAC_2006__23_3_a4/
%G en
%F JAC_2006__23_3_a4
Bohanon, Joseph P.; Reid, Les. Finite groups with planar subgroup lattices.. Journal of Algebraic Combinatorics, Tome 23 (2006) no. 3, pp. 207-223. https://geodesic-test.mathdoc.fr/item/JAC_2006__23_3_a4/