On regular semiovals in PG(2,q)
Journal of Algebraic Combinatorics, Tome 23 (2006) no. 1, pp. 71-77.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we prove that a point set in PG(2,q) meeting every line in 0, 1 or r points and having a unique tangent at each of its points is either an oval or a unital. This answers a question of Blokhuis and Szőnyi [1].
Mots-clés : keywords semioval, oval, unital, polynomials
@article{JAC_2006__23_1_a1,
     author = {G\'acs, Andr\'as},
     title = {On regular semiovals in $PG(2,q)$},
     journal = {Journal of Algebraic Combinatorics},
     pages = {71--77},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2006},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/JAC_2006__23_1_a1/}
}
TY  - JOUR
AU  - Gács, András
TI  - On regular semiovals in $PG(2,q)$
JO  - Journal of Algebraic Combinatorics
PY  - 2006
SP  - 71
EP  - 77
VL  - 23
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/JAC_2006__23_1_a1/
LA  - en
ID  - JAC_2006__23_1_a1
ER  - 
%0 Journal Article
%A Gács, András
%T On regular semiovals in $PG(2,q)$
%J Journal of Algebraic Combinatorics
%D 2006
%P 71-77
%V 23
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/JAC_2006__23_1_a1/
%G en
%F JAC_2006__23_1_a1
Gács, András. On regular semiovals in $PG(2,q)$. Journal of Algebraic Combinatorics, Tome 23 (2006) no. 1, pp. 71-77. https://geodesic-test.mathdoc.fr/item/JAC_2006__23_1_a1/