A local analysis of imprimitive symmetric graphs
Journal of Algebraic Combinatorics, Tome 22 (2005) no. 4, pp. 435-449.

Voir la notice de l'article dans Electronic Library of Mathematics

Summary: Let ? be a $G$-symmetric graph admitting a nontrivial $G$-invariant partition $B {\cal B}$ . Let ? $_{ B}$ _calB be the quotient graph of ? with respect to $B {\cal B}$ . For each block $B \epsilon B {\cal B}$ , the setwise stabiliser $G _{ B}$ of $B$ in $G$ induces natural actions on $B$ and on the neighbourhood ? $_{ B}$ _calB $( B)$ of $B$ in ? $_{ B}$ _calB . Let $G _{( B)}$ and $G _{[ B]}$ be respectively the kernels of these actions. In this paper we study certain "local actions" induced by $G _{( B)}$ and $G _{[ B]}$, such as the action of $G _{[ B]}$ on $B$ and the action of $G _{( B)}$ on ? $_{ B}$ _calB $( B)$, and their influence on the structure of ?.
Mots-clés : keywords symmetric graph, arc-transitive graph, quotient graph, locally quasiprimitive graph
@article{JAC_2005__22_4_a2,
     author = {Zhou, Sanming},
     title = {A local analysis of imprimitive symmetric graphs},
     journal = {Journal of Algebraic Combinatorics},
     pages = {435--449},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2005},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/JAC_2005__22_4_a2/}
}
TY  - JOUR
AU  - Zhou, Sanming
TI  - A local analysis of imprimitive symmetric graphs
JO  - Journal of Algebraic Combinatorics
PY  - 2005
SP  - 435
EP  - 449
VL  - 22
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/JAC_2005__22_4_a2/
LA  - en
ID  - JAC_2005__22_4_a2
ER  - 
%0 Journal Article
%A Zhou, Sanming
%T A local analysis of imprimitive symmetric graphs
%J Journal of Algebraic Combinatorics
%D 2005
%P 435-449
%V 22
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/JAC_2005__22_4_a2/
%G en
%F JAC_2005__22_4_a2
Zhou, Sanming. A local analysis of imprimitive symmetric graphs. Journal of Algebraic Combinatorics, Tome 22 (2005) no. 4, pp. 435-449. https://geodesic-test.mathdoc.fr/item/JAC_2005__22_4_a2/