On the Diaconis-Shahshahani method in random matrix theory
Journal of Algebraic Combinatorics, Tome 22 (2005) no. 4, pp. 471-491.

Voir la notice de l'article dans Electronic Library of Mathematics

Summary: If $\Gamma $is a random variable with values in a compact matrix group $K$, then the traces $Tr(\Gamma ^{ j}) ( j \epsilon N)$ are real or complex valued random variables. As a crucial step in their approach to random matrix eigenvalues, Diaconis and Shahshahani computed the joint moments of any fixed number of these traces if $\Gamma $is distributed according to Haar measure and if $K$ is one of U $_{ n}$, O $_{ n}$ or Sp $_{ n}$, where $n$ is large enough. In the orthogonal and symplectic cases, their proof is based on work of Ram on the characters of Brauer algebras. The present paper contains an alternative proof of these moment formulae. It invokes classical invariant theory (specifically, the tensor forms of the First Fundamental Theorems in the sense of Weyl) to reduce the computation of matrix integrals to a counting problem, which can be solved by elementary means.
Mots-clés : keywords random matrices, matrix integrals, classical invariant theory, tensor representations, Schur-Weyl duality
@article{JAC_2005__22_4_a0,
     author = {Stolz, Michael},
     title = {On the {Diaconis-Shahshahani} method in random matrix theory},
     journal = {Journal of Algebraic Combinatorics},
     pages = {471--491},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2005},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/JAC_2005__22_4_a0/}
}
TY  - JOUR
AU  - Stolz, Michael
TI  - On the Diaconis-Shahshahani method in random matrix theory
JO  - Journal of Algebraic Combinatorics
PY  - 2005
SP  - 471
EP  - 491
VL  - 22
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/JAC_2005__22_4_a0/
LA  - en
ID  - JAC_2005__22_4_a0
ER  - 
%0 Journal Article
%A Stolz, Michael
%T On the Diaconis-Shahshahani method in random matrix theory
%J Journal of Algebraic Combinatorics
%D 2005
%P 471-491
%V 22
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/JAC_2005__22_4_a0/
%G en
%F JAC_2005__22_4_a0
Stolz, Michael. On the Diaconis-Shahshahani method in random matrix theory. Journal of Algebraic Combinatorics, Tome 22 (2005) no. 4, pp. 471-491. https://geodesic-test.mathdoc.fr/item/JAC_2005__22_4_a0/