Distributive lattices, bipartite graphs and Alexander duality
Journal of Algebraic Combinatorics, Tome 22 (2005) no. 3, pp. 289-302.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A certain squarefree monomial ideal HP arising from a finite partially ordered set P will be studied from viewpoints of both commutative algbera and combinatorics. First, it is proved that the defining ideal of the Rees algebra of HP possesses a quadratic Gröbner basis. Thus in particular all powers of HP have linear resolutions. Second, the minimal free graded resolution of HP will be constructed explicitly and a combinatorial formula to compute the Betti numbers of HP will be presented. Third, by using the fact that the Alexander dual of the simplicial complex Δwhose Stanley-Reisner ideal coincides with HP is Cohen-Macaulay, all the Cohen-Macaulay bipartite graphs will be classified.
@article{JAC_2005__22_3_a4,
     author = {Herzog, J\"urgen and Hibi, Takayuki},
     title = {Distributive lattices, bipartite graphs and {Alexander} duality},
     journal = {Journal of Algebraic Combinatorics},
     pages = {289--302},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2005},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/JAC_2005__22_3_a4/}
}
TY  - JOUR
AU  - Herzog, Jürgen
AU  - Hibi, Takayuki
TI  - Distributive lattices, bipartite graphs and Alexander duality
JO  - Journal of Algebraic Combinatorics
PY  - 2005
SP  - 289
EP  - 302
VL  - 22
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/JAC_2005__22_3_a4/
LA  - en
ID  - JAC_2005__22_3_a4
ER  - 
%0 Journal Article
%A Herzog, Jürgen
%A Hibi, Takayuki
%T Distributive lattices, bipartite graphs and Alexander duality
%J Journal of Algebraic Combinatorics
%D 2005
%P 289-302
%V 22
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/JAC_2005__22_3_a4/
%G en
%F JAC_2005__22_3_a4
Herzog, Jürgen; Hibi, Takayuki. Distributive lattices, bipartite graphs and Alexander duality. Journal of Algebraic Combinatorics, Tome 22 (2005) no. 3, pp. 289-302. https://geodesic-test.mathdoc.fr/item/JAC_2005__22_3_a4/