A quantum version of the Désarménien matrix.
Journal of Algebraic Combinatorics, Tome 22 (2005) no. 3, pp. 303-316.

Voir la notice de l'article dans Electronic Library of Mathematics

Summary: We use elements in the quantum hyperalgebra to define a quantum version of the Désarménien matrix. We prove that our matrix is upper triangular with ones on the diagonal and that, as in the classical case, it gives a quantum straightening algorithm for quantum bideterminants. We use our matrix to give a new proof of the standard basis theorem for the $q$-Weyl module. As well, we show that the standard basis for the $q$-Weyl module and the basis dual to the standard basis for the $q$-Schur module are related by the quantum Désarménien matrix.
Mots-clés : keywords $q$-Weyl module, $q$-Schur module, désarménien matrix, quantum straightening algorithm, standard basis theorem
@article{JAC_2005__22_3_a3,
     author = {Stokke, Anna},
     title = {A quantum version of the {D\'esarm\'enien} matrix.},
     journal = {Journal of Algebraic Combinatorics},
     pages = {303--316},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2005},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/JAC_2005__22_3_a3/}
}
TY  - JOUR
AU  - Stokke, Anna
TI  - A quantum version of the Désarménien matrix.
JO  - Journal of Algebraic Combinatorics
PY  - 2005
SP  - 303
EP  - 316
VL  - 22
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/JAC_2005__22_3_a3/
LA  - en
ID  - JAC_2005__22_3_a3
ER  - 
%0 Journal Article
%A Stokke, Anna
%T A quantum version of the Désarménien matrix.
%J Journal of Algebraic Combinatorics
%D 2005
%P 303-316
%V 22
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/JAC_2005__22_3_a3/
%G en
%F JAC_2005__22_3_a3
Stokke, Anna. A quantum version of the Désarménien matrix.. Journal of Algebraic Combinatorics, Tome 22 (2005) no. 3, pp. 303-316. https://geodesic-test.mathdoc.fr/item/JAC_2005__22_3_a3/