Covers of point-hyperplane graphs
Journal of Algebraic Combinatorics, Tome 22 (2005) no. 3, pp. 317-329.
Voir la notice de l'article dans Electronic Library of Mathematics
Summary: A cover of the non-incident point-hyperplane graph of projective dimension 3 for fields of characteristic 2 is constructed. For fields $\mathbb F {\mathbb F}$ of even order larger than 2, this leads to an elementary construction of the non-split extension of SL $_{4}( \mathbb F {\mathbb F} )$by $\mathbb F {\mathbb F} ^{6}$.
Mots-clés :
keywords group extension, graph cover, special linear group, projective geometry
@article{JAC_2005__22_3_a2, author = {Cohen, Arjeh M. and Postma, E.J.}, title = {Covers of point-hyperplane graphs}, journal = {Journal of Algebraic Combinatorics}, pages = {317--329}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2005}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/JAC_2005__22_3_a2/} }
Cohen, Arjeh M.; Postma, E.J. Covers of point-hyperplane graphs. Journal of Algebraic Combinatorics, Tome 22 (2005) no. 3, pp. 317-329. https://geodesic-test.mathdoc.fr/item/JAC_2005__22_3_a2/