Row and column removal theorems for homomorphisms of Specht modules and Weyl modules.
Journal of Algebraic Combinatorics, Tome 22 (2005) no. 2, pp. 151-179.

Voir la notice de l'article dans Electronic Library of Mathematics

Summary: We prove a $q$-analogue of the row and column removal theorems for homomorphisms between Specht modules proved by Fayers and the first author [16]. These results can be considered as complements to James and Donkin's row and column removal theorems for decomposition numbers of the symmetric and general linear groups. In this paper we consider homomorphisms between the Specht modules of the Hecke algebras of type $A$ and between the Weyl modules of the $q$-Schur algebra.
Mots-clés : keywords Hecke algebras, Schur algebras
@article{JAC_2005__22_2_a3,
     author = {Lyle, Sin\'ead and Mathas, Andrew},
     title = {Row and column removal theorems for homomorphisms of {Specht} modules and {Weyl} modules.},
     journal = {Journal of Algebraic Combinatorics},
     pages = {151--179},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2005},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/JAC_2005__22_2_a3/}
}
TY  - JOUR
AU  - Lyle, Sinéad
AU  - Mathas, Andrew
TI  - Row and column removal theorems for homomorphisms of Specht modules and Weyl modules.
JO  - Journal of Algebraic Combinatorics
PY  - 2005
SP  - 151
EP  - 179
VL  - 22
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/JAC_2005__22_2_a3/
LA  - en
ID  - JAC_2005__22_2_a3
ER  - 
%0 Journal Article
%A Lyle, Sinéad
%A Mathas, Andrew
%T Row and column removal theorems for homomorphisms of Specht modules and Weyl modules.
%J Journal of Algebraic Combinatorics
%D 2005
%P 151-179
%V 22
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/JAC_2005__22_2_a3/
%G en
%F JAC_2005__22_2_a3
Lyle, Sinéad; Mathas, Andrew. Row and column removal theorems for homomorphisms of Specht modules and Weyl modules.. Journal of Algebraic Combinatorics, Tome 22 (2005) no. 2, pp. 151-179. https://geodesic-test.mathdoc.fr/item/JAC_2005__22_2_a3/