A ring theoretic construction of Hadamard difference sets in $\Bbb Z^n_8 \times \Bbb Z^n_2$
Journal of Algebraic Combinatorics, Tome 22 (2005) no. 2, pp. 181-187.

Voir la notice de l'article dans Electronic Library of Mathematics

Summary: Let S= GR($2 ^{3}, n$) S=$\rm $GR(2^3, n) be the Galois ring of characteristic $2 ^{3}$ and rank $n$ and let $R= S[ X]/( X ^{2}, 2 X -4)$ R=S[X]/(X^2, 2X-4) . We give an explicit construction of Hadamard difference sets in $( R,+) @ \Bbb Z _{8} ^{ n}\times \Bbb Z _{2} ^{ n}$ (R,+)$\cong{\Bbb Z}$_8^n$\times{\Bbb Z}$_2^n .
Mots-clés : keywords bent function, finite Frobenius local ring, Galois ring, Hadamard difference set
@article{JAC_2005__22_2_a2,
     author = {Hou, Xiang-dong},
     title = {A ring theoretic construction of {Hadamard} difference sets in $\Bbb Z^n_8 \times \Bbb Z^n_2$},
     journal = {Journal of Algebraic Combinatorics},
     pages = {181--187},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2005},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/JAC_2005__22_2_a2/}
}
TY  - JOUR
AU  - Hou, Xiang-dong
TI  - A ring theoretic construction of Hadamard difference sets in $\Bbb Z^n_8 \times \Bbb Z^n_2$
JO  - Journal of Algebraic Combinatorics
PY  - 2005
SP  - 181
EP  - 187
VL  - 22
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/JAC_2005__22_2_a2/
LA  - en
ID  - JAC_2005__22_2_a2
ER  - 
%0 Journal Article
%A Hou, Xiang-dong
%T A ring theoretic construction of Hadamard difference sets in $\Bbb Z^n_8 \times \Bbb Z^n_2$
%J Journal of Algebraic Combinatorics
%D 2005
%P 181-187
%V 22
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/JAC_2005__22_2_a2/
%G en
%F JAC_2005__22_2_a2
Hou, Xiang-dong. A ring theoretic construction of Hadamard difference sets in $\Bbb Z^n_8 \times \Bbb Z^n_2$. Journal of Algebraic Combinatorics, Tome 22 (2005) no. 2, pp. 181-187. https://geodesic-test.mathdoc.fr/item/JAC_2005__22_2_a2/