A ring theoretic construction of Hadamard difference sets in $\Bbb Z^n_8 \times \Bbb Z^n_2$
Journal of Algebraic Combinatorics, Tome 22 (2005) no. 2, pp. 181-187.
Voir la notice de l'article dans Electronic Library of Mathematics
Summary: Let S= GR($2 ^{3}, n$) S=$\rm $GR(2^3, n) be the Galois ring of characteristic $2 ^{3}$ and rank $n$ and let $R= S[ X]/( X ^{2}, 2 X -4)$ R=S[X]/(X^2, 2X-4) . We give an explicit construction of Hadamard difference sets in $( R,+) @ \Bbb Z _{8} ^{ n}\times \Bbb Z _{2} ^{ n}$ (R,+)$\cong{\Bbb Z}$_8^n$\times{\Bbb Z}$_2^n .
Mots-clés :
keywords bent function, finite Frobenius local ring, Galois ring, Hadamard difference set
@article{JAC_2005__22_2_a2, author = {Hou, Xiang-dong}, title = {A ring theoretic construction of {Hadamard} difference sets in $\Bbb Z^n_8 \times \Bbb Z^n_2$}, journal = {Journal of Algebraic Combinatorics}, pages = {181--187}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2005}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/JAC_2005__22_2_a2/} }
TY - JOUR AU - Hou, Xiang-dong TI - A ring theoretic construction of Hadamard difference sets in $\Bbb Z^n_8 \times \Bbb Z^n_2$ JO - Journal of Algebraic Combinatorics PY - 2005 SP - 181 EP - 187 VL - 22 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/JAC_2005__22_2_a2/ LA - en ID - JAC_2005__22_2_a2 ER -
Hou, Xiang-dong. A ring theoretic construction of Hadamard difference sets in $\Bbb Z^n_8 \times \Bbb Z^n_2$. Journal of Algebraic Combinatorics, Tome 22 (2005) no. 2, pp. 181-187. https://geodesic-test.mathdoc.fr/item/JAC_2005__22_2_a2/