Tight Gaussian 4-designs
Journal of Algebraic Combinatorics, Tome 22 (2005) no. 1, pp. 39-63.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A Gaussian t-design is defined as a finite set X in the Euclidean space Rn satisfying the condition: 1V(Rn) ò $_{\mathbb R $^ n$ f( x) e ^{ - a $^2||x||^2dx= å u\~IXw(u)f(u) frac1V(Rn)int_R^n f(x)e^-alpha^2||x||^2dx=sum_u\in X}\omega(u)f(u) for any polynomial f(x) in n variables of degree at most t, here αis a constant real number and ωis a positive weight function on X. It is easy to see that if X is a Gaussian 2e-design in Rn, then |X|3((n+e)||(e)) |X|n+e(e) . We call X a tight Gaussian 2e-design in Rn if |X|=((n+e)||(e)) |X|=n+e(e) holds. In this paper we study tight Gaussian 2e-designs in Rn. In particular, we classify tight Gaussian 4-designs in Rn with constant weight w=1|X| omega=frac1|X| or with weight $w( u)=\frac e ^{ - a $^2||u||^2 å $_{ x \~I X} e ^{ - a $^2||x||^2ω(u)=frace^-alpha^2||u||^2 sum_xXe^-alpha^2||x||^2 . Moreover we classify tight Gaussian 4-designs in Rn on 2 concentric spheres (with arbitrary weight functions).
Mots-clés : keywords Gaussian design, tight design, spherical design, 2-distance set, Euclidean design, addition formula, quadrature formula
@article{JAC_2005__22_1_a3,
     author = {Bannai, Eiichi and Bannai, Etsuko},
     title = {Tight {Gaussian} 4-designs},
     journal = {Journal of Algebraic Combinatorics},
     pages = {39--63},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2005},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/JAC_2005__22_1_a3/}
}
TY  - JOUR
AU  - Bannai, Eiichi
AU  - Bannai, Etsuko
TI  - Tight Gaussian 4-designs
JO  - Journal of Algebraic Combinatorics
PY  - 2005
SP  - 39
EP  - 63
VL  - 22
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/JAC_2005__22_1_a3/
LA  - en
ID  - JAC_2005__22_1_a3
ER  - 
%0 Journal Article
%A Bannai, Eiichi
%A Bannai, Etsuko
%T Tight Gaussian 4-designs
%J Journal of Algebraic Combinatorics
%D 2005
%P 39-63
%V 22
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/JAC_2005__22_1_a3/
%G en
%F JAC_2005__22_1_a3
Bannai, Eiichi; Bannai, Etsuko. Tight Gaussian 4-designs. Journal of Algebraic Combinatorics, Tome 22 (2005) no. 1, pp. 39-63. https://geodesic-test.mathdoc.fr/item/JAC_2005__22_1_a3/