Generalized exponents and forms
Journal of Algebraic Combinatorics, Tome 22 (2005) no. 1, pp. 115-132.

Voir la notice de l'article dans Electronic Library of Mathematics

Summary: We consider generalized exponents of a finite reflection group acting on a real or complex vector space $V$. These integers are the degrees in which an irreducible representation of the group occurs in the coinvariant algebra. A basis for each isotypic component arises in a natural way from a basis of invariant generalized forms. We investigate twisted reflection representations ( $V$ tensor a linear character) using the theory of semi-invariant differential forms. Springer's theory of regular numbers gives a formula when the group is generated by dim $V$ reflections. Although our arguments are case-free, we also include explicit data and give a method (using differential operators) for computing semi-invariants and basic derivations. The data give bases for certain isotypic components of the coinvariant algebra.
Mots-clés : keywords reflection group, invariant theory, generalized exponents, Coxeter group, fake degree, hyperplane arrangement, derivations
@article{JAC_2005__22_1_a0,
     author = {Shepler, Anne V.},
     title = {Generalized exponents and forms},
     journal = {Journal of Algebraic Combinatorics},
     pages = {115--132},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2005},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/JAC_2005__22_1_a0/}
}
TY  - JOUR
AU  - Shepler, Anne V.
TI  - Generalized exponents and forms
JO  - Journal of Algebraic Combinatorics
PY  - 2005
SP  - 115
EP  - 132
VL  - 22
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/JAC_2005__22_1_a0/
LA  - en
ID  - JAC_2005__22_1_a0
ER  - 
%0 Journal Article
%A Shepler, Anne V.
%T Generalized exponents and forms
%J Journal of Algebraic Combinatorics
%D 2005
%P 115-132
%V 22
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/JAC_2005__22_1_a0/
%G en
%F JAC_2005__22_1_a0
Shepler, Anne V. Generalized exponents and forms. Journal of Algebraic Combinatorics, Tome 22 (2005) no. 1, pp. 115-132. https://geodesic-test.mathdoc.fr/item/JAC_2005__22_1_a0/