A note on varieties of groupoids arising from $m$-cycle systems
Journal of Algebraic Combinatorics, Tome 4 (1995) no. 3, pp. 197-200.

Voir la notice de l'article dans Electronic Library of Mathematics

Summary: Decompositions of the complete graph with $n$ vertices $K _{n}$ into edge disjoint cycles of length $m$ whose union is $K _{n}$ are commonly called $m$-cycle systems. Any $m$-cycle system gives rise to a groupoid defined on the vertex set of $K _{n}$ via a well known construction. Here, it is shown that the groupoids arising from all $m$-cycle systems are precisely the finite members of a variety (of groupoids) for $m = 3$ and 5 only.
Mots-clés : $m$-cycle system, variety, equationally denned, groupoid
@article{JAC_1995__4_3_a3,
     author = {Bryant, Darryn E.},
     title = {A note on varieties of groupoids arising from $m$-cycle systems},
     journal = {Journal of Algebraic Combinatorics},
     pages = {197--200},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {1995},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/JAC_1995__4_3_a3/}
}
TY  - JOUR
AU  - Bryant, Darryn E.
TI  - A note on varieties of groupoids arising from $m$-cycle systems
JO  - Journal of Algebraic Combinatorics
PY  - 1995
SP  - 197
EP  - 200
VL  - 4
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/JAC_1995__4_3_a3/
LA  - en
ID  - JAC_1995__4_3_a3
ER  - 
%0 Journal Article
%A Bryant, Darryn E.
%T A note on varieties of groupoids arising from $m$-cycle systems
%J Journal of Algebraic Combinatorics
%D 1995
%P 197-200
%V 4
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/JAC_1995__4_3_a3/
%G en
%F JAC_1995__4_3_a3
Bryant, Darryn E. A note on varieties of groupoids arising from $m$-cycle systems. Journal of Algebraic Combinatorics, Tome 4 (1995) no. 3, pp. 197-200. https://geodesic-test.mathdoc.fr/item/JAC_1995__4_3_a3/