Schensted algorithms for dual graded graphs
Journal of Algebraic Combinatorics, Tome 4 (1995) no. 1, pp. 5-45.

Voir la notice de l'article dans Electronic Library of Mathematics

Summary: This paper is a sequel to [3]. We keep the notation and terminology and extend the numbering of sections, propositions, and formulae of [3]. The main result of this paper is a generalization of the Robinson-Schensted correspondence to the class of dual graded graphs introduced in [3], This class extends the class of $Y$-graphs, or differential posets [22], for which a generalized Schensted correspondence was constructed earlier in [2].
Mots-clés : discrete algorithm, enumerative combinatorics, poset, Young diagram
@article{JAC_1995__4_1_a2,
     author = {Fomin, Sergey},
     title = {Schensted algorithms for dual graded graphs},
     journal = {Journal of Algebraic Combinatorics},
     pages = {5--45},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {1995},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/JAC_1995__4_1_a2/}
}
TY  - JOUR
AU  - Fomin, Sergey
TI  - Schensted algorithms for dual graded graphs
JO  - Journal of Algebraic Combinatorics
PY  - 1995
SP  - 5
EP  - 45
VL  - 4
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/JAC_1995__4_1_a2/
LA  - en
ID  - JAC_1995__4_1_a2
ER  - 
%0 Journal Article
%A Fomin, Sergey
%T Schensted algorithms for dual graded graphs
%J Journal of Algebraic Combinatorics
%D 1995
%P 5-45
%V 4
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/JAC_1995__4_1_a2/
%G en
%F JAC_1995__4_1_a2
Fomin, Sergey. Schensted algorithms for dual graded graphs. Journal of Algebraic Combinatorics, Tome 4 (1995) no. 1, pp. 5-45. https://geodesic-test.mathdoc.fr/item/JAC_1995__4_1_a2/