Combinatorial $S\sb n$-modules as codes
Journal of Algebraic Combinatorics, Tome 4 (1995) no. 1, pp. 47-68.

Voir la notice de l'article dans Electronic Library of Mathematics

Summary: Certain $\mathbb Z S _{ n}$ mathbbZS_n -modules related to the kernels ofincidence maps between types in the poset defined by the natural productorder on the set of $n$-tuples with entries from 1, frac14 $\ldots , m$ are studied as linear codes (whencoefficients are extended to an arbitrary field $K$). Theirdimensions and minimal weights are computed. The Specht modules areextremal among these submodules. The minimum weight codewords of theSpecht module are shown to be scalar multiples of polytabloids. Ageneralization of t-design arising from the natural permutation $S _{n}$-modules labelled by partitions with $m$parts is introduced. A connection with Reed-Muller codes is noted and acharacteristic free formulation is presented.
Mots-clés : symmetric group, Specht module, $t$-design, Reed-muller code
@article{JAC_1995__4_1_a1,
     author = {Liebler, Robert A. and Zimmermann, Karl-Heinz},
     title = {Combinatorial $S\sb n$-modules as codes},
     journal = {Journal of Algebraic Combinatorics},
     pages = {47--68},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {1995},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/JAC_1995__4_1_a1/}
}
TY  - JOUR
AU  - Liebler, Robert A.
AU  - Zimmermann, Karl-Heinz
TI  - Combinatorial $S\sb n$-modules as codes
JO  - Journal of Algebraic Combinatorics
PY  - 1995
SP  - 47
EP  - 68
VL  - 4
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/JAC_1995__4_1_a1/
LA  - en
ID  - JAC_1995__4_1_a1
ER  - 
%0 Journal Article
%A Liebler, Robert A.
%A Zimmermann, Karl-Heinz
%T Combinatorial $S\sb n$-modules as codes
%J Journal of Algebraic Combinatorics
%D 1995
%P 47-68
%V 4
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/JAC_1995__4_1_a1/
%G en
%F JAC_1995__4_1_a1
Liebler, Robert A.; Zimmermann, Karl-Heinz. Combinatorial $S\sb n$-modules as codes. Journal of Algebraic Combinatorics, Tome 4 (1995) no. 1, pp. 47-68. https://geodesic-test.mathdoc.fr/item/JAC_1995__4_1_a1/