The homology of partitions with an even number of blocks
Journal of Algebraic Combinatorics, Tome 4 (1995) no. 1, pp. 69-92.

Voir la notice de l'article dans Electronic Library of Mathematics

Summary: Let Õ 2ne_2n^e denote the subposet obtained by selecting even ranks in the partition lattice Õ 2n_2n . We show that the homology of Õ 2ne_2n^e has dimension frac(2n)!22n1E2n1 \frac{{(2n)!}}{{2^{2n - 1} }}E\_{2n - 1} , where E2n1 E\_{2n - 1} is the tangent number. It is thus an integral multiple of both the Genocchi number and an Andr\'e or simsun number. Using the general theory of rank-selected homology representations developed in [22], we show that, for the special case of \~O 2neprod{\_{2n}^e } , the character of the symmetric group S2n on the homology is supported on the set of involutions. Our proof techniques lead to the discovery of a family of integers bi(n),2S2ixS12n2i S\_2^i xS\_1^{2n - 2i} , with nonnegative integer multiplicity bi(n). The nonnegativity of the integers bi(n) would imply the existence of new refinements, into sums of powers of 2, of the tangent number and the Andr\'e or simsun number an(2n). Similarly, the restriction of this homology module to S2n1 yields a family of integers di(n), 1 \~O 2neprod{\_{2n}^e } , 1 leklen1. We conjecture that these are all permutation modules for S2n.$
Mots-clés : homology representation, permutation module, André permutations, simsun permutation, tangent and Genocchi number
@article{JAC_1995__4_1_a0,
     author = {Sundaram, Sheila},
     title = {The homology of partitions with an even number of blocks},
     journal = {Journal of Algebraic Combinatorics},
     pages = {69--92},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {1995},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/JAC_1995__4_1_a0/}
}
TY  - JOUR
AU  - Sundaram, Sheila
TI  - The homology of partitions with an even number of blocks
JO  - Journal of Algebraic Combinatorics
PY  - 1995
SP  - 69
EP  - 92
VL  - 4
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/JAC_1995__4_1_a0/
LA  - en
ID  - JAC_1995__4_1_a0
ER  - 
%0 Journal Article
%A Sundaram, Sheila
%T The homology of partitions with an even number of blocks
%J Journal of Algebraic Combinatorics
%D 1995
%P 69-92
%V 4
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/JAC_1995__4_1_a0/
%G en
%F JAC_1995__4_1_a0
Sundaram, Sheila. The homology of partitions with an even number of blocks. Journal of Algebraic Combinatorics, Tome 4 (1995) no. 1, pp. 69-92. https://geodesic-test.mathdoc.fr/item/JAC_1995__4_1_a0/