Optimal velocity distributions in the design of supercavitating hydrofoils
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2023), pp. 71-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, the proofs of theorems formulated in the work by S.E. Gazizova, D.V. Maklakov (LJM, 42 (8), 2021) are sketched out. The theorems serve as a basis for designing supercavitating hydrofoils that have a minimum drag coefficient for a given lift coefficient. Thus, the maximum lift-to-drag ratio is achieved.
Mots-clés : nonlinear functional, absolute minimum, Jensen's inequality.
@article{IVM_2023_8_a7,
     author = {D. V. Maklakov and S. E. Gazizova and I. R. Kayumov},
     title = {Optimal velocity distributions in the design of supercavitating hydrofoils},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {71--77},
     publisher = {mathdoc},
     number = {8},
     year = {2023},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/IVM_2023_8_a7/}
}
TY  - JOUR
AU  - D. V. Maklakov
AU  - S. E. Gazizova
AU  - I. R. Kayumov
TI  - Optimal velocity distributions in the design of supercavitating hydrofoils
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 71
EP  - 77
IS  - 8
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/IVM_2023_8_a7/
LA  - ru
ID  - IVM_2023_8_a7
ER  - 
%0 Journal Article
%A D. V. Maklakov
%A S. E. Gazizova
%A I. R. Kayumov
%T Optimal velocity distributions in the design of supercavitating hydrofoils
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 71-77
%N 8
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/IVM_2023_8_a7/
%G ru
%F IVM_2023_8_a7
D. V. Maklakov; S. E. Gazizova; I. R. Kayumov. Optimal velocity distributions in the design of supercavitating hydrofoils. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2023), pp. 71-77. https://geodesic-test.mathdoc.fr/item/IVM_2023_8_a7/

[1] Gazizova S.E., Maklakov D.V., “Optimum shapes of supercavitating hydrofoils at zero cavitation number”, Lobachevskii J. Math., 42:8 (2021), 1969–1976 | DOI | MR | Zbl

[2] Gurevich M.I., Teoriya strui idealnoi zhidkosti, 2-e izd., Nauka, M., 1979

[3] Khardi G.G., Littlvud D.E., Polia G., Neeravnstva, IL, M., 1948